На самом деле, даже в будущем, когда отпуск где-нибудь в окрестностях Юпитера будет таким же обычным делом, как сегодня – на египетском пляже, главным туристическим центром все равно останется Земля. Причина этому проста: здесь всегда хорошая погода. А вот на других планетах и спутниках с этим совсем плохо.

Меркурий

Поверхность планеты Меркурий напоминает лунную

Хотя атмосферы у Меркурия нет вовсе, климат здесь, все же, имеется. И создает его, конечно, обжигающая близость Солнца. А поскольку воздух и вода не могут эффективно переносить тепло с одной части планеты на другую, здесь встречаются поистине смертоносные перепады температуры.

На дневной стороне Меркурия поверхность может прогреваться до 430 градусов Цельсия – достаточно, чтобы расплавилось олово, а на ночной – опускаться до - 180 градусов Цельсия. На фоне ужасающей жары рядом, на дне некоторых кратеров так холодно, что в этой вечной тени миллионы лет сохраняется грязноватый лед.

Ось вращения Меркурия не наклонена, как у Земли, а строго перпендикулярна орбите. Поэтому сменой сезонов здесь не полюбуешься: одна и та же погода стоит круглый год. Вдобавок к этому и день на планете длится примерно полтора наших года.

Венера

Кратеры на поверхности Венеры

Скажем прямо: не ту планету назвали Венерой. Да, в рассветном небе она действительно сияет, как чистой воды драгоценный камень. Но это пока Вы не познакомитесь с ней поближе. Соседнюю планету можно рассматривать в качестве наглядного пособия по вопросу о том, что способен сотворить перешедший все границы парниковый эффект.

Атмосфера Венеры невероятно плотна, неспокойна и агрессивна. Состоя по большей части из углекислого газа, она поглощает больше солнечной энергии, чем тот же Меркурий, хотя находится от Солнца намного дальше него. Поэтому на планете еще жарче: почти не меняясь с течением года, температура здесь держится в районе 480 градусов Цельсия. Добавьте сюда атмосферное давление, которое на Земле можно получить разве что погрузившись в океан на километровую глубину, и Вы вряд ли захотите здесь оказаться.

Но это еще не вся правда о скверном характере красавицы. На поверхности Венеры беспрерывно извергаются мощнейшие вулканы, наполняя атмосферу сажей и соединениями серы, которые быстро превращаются в серную кислоту. Да, на этой планете идут кислотные дожди – причем действительно кислотные, которые легко оставили бы раны на коже и разъели фототехнику туристов.

Впрочем, туристы не смогли бы здесь даже выпрямиться, чтобы сделать снимок: атмосфера Венеры вращается гораздо быстрее ее самой. На Земле воздух огибает планету почти за год, на Венере – за четыре часа, порождая постоянный ветер ураганной силы. Неудивительно, что до сих пор даже специально подготовленные космические аппараты не смогли просуществовать дольше нескольких минут в этом отвратительном климате. Как хорошо, что на нашей родной планете нет такого. У нашей природы нет плохой погоды, что подтверждается на http://www.gismeteo.ua/city/daily/4957/ , и это не может не радовать.

Марс

Атмосфера Марса, снимок получен искусственным спутником «Викинг» в 1976. Слева виден «кратер-смайлик» Галле

Увлекательные находки, которые сделаны на Красной планете за последние годы, показывают, что в далеком прошлом Марс был совсем другим. Миллиарды лет назад это была влажная планета с неплохой атмосферой и обширными водоемами. Кое-где на нем остались следы древней береговой линии – но это всё: сегодня сюда лучше не попадать. Современный Марс – это голая и мертвая ледяная пустыня, по которой то и дело проносятся мощные пылевые бури.

Плотной атмосферы, которая могла бы удерживать тепло и воду, на планете давно нет. Как она исчезла, еще не очень понятно, но скорее всего, Марс просто не обладает достаточной «притягательной силой»: примерно вдвое меньше Земли, он обладает почти втрое меньшей гравитацией.

В итоге на полюсах здесь царит глубокий холод и сохраняются полярные шапки, состоящие, в основном, из «сухого снега» – замерзшего углекислого газа. Стоит признать, что близ экватора температура днем может быть очень комфортной, около 20 градусов Цельсия. Но, впрочем, ночью она все равно упадет на несколько десятков градусов ниже нуля.

Несмотря на откровенно слабую атмосферу Марса, снеговые бури у его полюсов и пылевые в остальных частях – вовсе не редкость. Самумы, хамсины и прочие изнурительные пустынные ветры, несущие мириады всепроникающих и колючих песчинок, ветры, с которыми на Земле сталкиваются лишь в некоторых регионах, здесь могут охватить всю планету, на несколько дней сделав ее совершенно нефотографируемой.

Юпитер и окрестности

Чтобы оценить масштаб юпитерианских штормов, даже мощного телескопа не требуется. Самый внушительный из них – Большое красное пятно – не утихает уже несколько столетий, а размеры имеет втрое больше всей нашей Земли. Впрочем, и он скоро может потерять положение долговременного лидера. Несколько лет назад астрономы обнаружили на Юпитере новый вихрь – Овал ВА, который пока не достигает размеров Большого красного пятна, но растет угрожающе быстро.

Нет, Юпитер вряд ли привлечет даже любителей экстремального отдыха. Ураганные ветры здесь дуют постоянно, они охватывают всю планету, двигаясь со скоростью под 500 км/ч, причем нередко в противоположных направлениях, что создает на их границах ужасающие турбулентные вихри (такие, как знакомое нам Большое красное пятно, или Овал ВА).

Кроме температуры ниже - 140 градусов Цельсия и смертельной силы притяжения, нужно не забыть об еще одном факте – на Юпитере негде гулять. Эта планета – газовый гигант, вообще лишенный определенной твердой поверхности. И если б даже какому-то отчаянному скайдайверу удалось нырнуть в его атмосферу, закончил бы он в полужидкой глубине планеты, где колоссальная гравитация создает материю экзотических форм – скажем, сверхтекучий металлический водород.

Зато обычным дайверам стоит обратить внимание на один из спутников планеты-великана – Европу. Вообще, из множества спутников Юпитера по крайней мере два в будущем наверняка смогут претендовать на звание «туристической Мекки».

Например, Европа целиком покрыта океаном соленой воды. Ныряльщику здесь раздолье – глубина достигает 100 км – если только пробиться сквозь ледяную корку, которая охватывает весь спутник. Пока никто не знает, что обнаружит на Европе будущий последователь Жака-Ива Кусто: некоторые планетологи предполагают, что здесь могут найтись условия, подходящие и для жизни.

Другой юпитерианский спутник – Ио, без сомнения, станет любимчиком фотоблогеров. Мощная гравитация близкой и громадной планеты постоянно деформирует, «мнёт» спутник и нагревает его недра до огромных температур. Эта энергия прорывается на поверхность в областях геологической активности и питает сотни постоянно действующих вулканов. Из-за слабого притяжения на спутнике извержения выбрасывают впечатляющие потоки, которые поднимаются на сотни километров в высоту. Фотографов ждут чрезвычайно аппетитные кадры!

Сатурн с «пригородами»

Не менее заманчив с точки зрения фотоискусства, конечно, Сатурн со своими блистательными кольцами. Особый интерес может представлять необычная буря у северного полюса планеты, имеющая форму почти правильного шестиугольника со сторонами почти по 14 тыс. км.

Но для нормального отдыха Сатурн совсем не приспособлен. В общем и целом, это такой же газовый гигант, как Юпитер, только хуже. Атмосфера здесь холодная и плотная, а местные ураганы могут двигаться быстрее звука и быстрее пули – зафиксирована скорость более 1600 км/ч.

А вот климат спутника Сатурна Титана может привлечь целую толпу олигархов. Дело, правда, вовсе не в удивительной мягкости погоды. Титан – единственное известное нам небесное тело, на котором имеется круговорот жидкости, как на Земле. Только роль воды здесь играют... жидкие углеводороды.

Те самые вещества, которые на Земле составляют главное богатство страны – природный газ (метан) и другие горючие соединения – на Титане присутствуют в избытке, в жидкой форме: для этого тут достаточно холодно (- 162 градусов Цельсия). Метан клубится в облаках и проливается дождями, наполняет реки, которые впадают в почти полноценные моря... Качать – не перекачать!

Уран

Не самая далекая, но самая холодная планета во всей Солнечной системе: «столбик термометра» здесь может опускаться до неприятной отметки в − 224 градусов Цельсия. Это ненамного теплее абсолютного нуля. Почему-то – возможно, из-за столкновения с каким-то большим телом – Уран вращается лежа на боку, и северный полюс планеты повернут в сторону Солнца. Помимо мощных ураганов, здесь не на что смотреть.

Нептун и Тритон

Нептун (вверху) и Тритон (ниже)

Как и другие газовые гиганты, Нептун – место совсем неспокойное. Бури здесь могут достигать размеров больше всей нашей планеты и двигаться на рекордной известной нам скорости: почти 2500 км/ч. В остальном – это скучное место. Посетить Нептун стоит разве что из-за одного из его спутников – Тритона.

В целом Тритон так же холоден и однообразен, как его планета, но туристов всегда интригует все преходящее и гибнущее. Тритон как раз из таких: спутник медленно сближается с Нептуном, и спустя некоторое время будет разорван его гравитацией. Часть обломков упадет на планету, а часть может образовать некое подобие кольца, как у Сатурна. Точно сказать, когда это произойдет, пока не получается: где-то через 10 или 100 млн лет. Так что стоит поторопиться, чтобы успеть увидеть Тритон – знаменитый «Гибнущий спутник».

Плутон

Лишенный высокого звания планеты, Плутон остался в карликах, но можно смело сказать: это очень странное и негостеприимное место. Орбита Плутона очень длинна и сильно вытянута в овал, из-за чего год здесь длится почти 250 земных лет. За это время погода успевает сильно измениться.

Пока на карликовой планете царит зима, она замерзает целиком. Приближаясь к Солнцу, Плутон разогревается. Поверхностный лед, состоящий из метана, азота и угарного газа, начинает испаряться, создавая тонкую атмосферную оболочку. Временно Плутон становится похож на вполне полноценную планету, а заодно и на комету: из-за карликовых размеров газ не удерживается, а уносится прочь с него, создавая хвост. Нормальные планеты так себя не ведут.

Все эти климатические аномалии вполне понятны. Жизнь возникла и развивалась именно в земных условиях, поэтому здешний климат для нас практически идеален. Даже самые ужасные сибирские морозы и тропические бури выглядят детскими шалостями в сравнении с тем, что ждет отпускников на Сатурне или Нептуне. Поэтому наш Вам совет на будущее: не стоит тратить долгожданные дни отдыха на эти экзотические места. Лучше будем беречь нашу собственную уютную , чтобы и тогда, когда межпланетные путешествия станут доступны, наши потомки могли отдохнуть на египетском пляже или просто за городом, на чистой речке.

АТМОСФЕРЫ ПЛАНЕТ АТМОСФЕРЫ ПЛАНЕТ - газовые оболочки планет, вращающиеся вместе с планетами, рассеивающие и поглощающие солнечное излучение . Атмосферы планет Юпитера, Сатурна, Нептуна состоят преимущественно из водорода, гелия и метана, Венеры и Марса - главным образом из углекислого газа . Сложный состав имеет атмосфера Земли (N2, O2, Ar, CO2 и др.).

Большой Энциклопедический словарь . 2000 .

Смотреть что такое "АТМОСФЕРЫ ПЛАНЕТ" в других словарях:

    Газовые оболочки планет, вращающиеся вместе с планетами, рассеивающие и поглощающие солнечное излучение. Атмосферы планет Юпитера, Сатурна, Нептуна состоят преимущественно из водорода, гелия и метана, Венеры и Марса главным образом из… … Энциклопедический словарь

    Внешние газовые оболочки планет. Атмосферами обладают все большие планеты Солнечной системы, за исключением, может быть, Меркурия и Плутона. Атмосфера обнаружена также у спутника Сатурна Титана; возможно, она существует также у спутников… … Большая советская энциклопедия

    Газ. оболочки планет, вращающиеся вместе с планетами, рассеивающие и поглощающие солнечное излучение. А. п. Юпитера, Сатурна, Нептуна состоят преим. из водорода, гелия и метана, Венеры и Марса гл. обр. из углекислого газа. Сложный состав имеет… … Естествознание. Энциклопедический словарь

    парниковый эффект атмосферы планеты - парниковый эффект Превышение температуры в глубине атмосферы над эффективной температурой планеты, являющееся следствием более высокой прозрачности атмосферы для солнечной радиации, чем для тепловой. [ГОСТ 25645.143 84] Тематики атмосферы планет… …

    общая циркуляция атмосферы планеты - общая циркуляция Многолетнее устойчивое распределение ветров на планете. [ГОСТ 25645.143 84] Тематики атмосферы планет Синонимы общая циркуляция EN general circulation of the planetary atmosphere … Справочник технического переводчика

    оптическая толщина атмосферы - оптическая толщина Величина, характеризующая ослабление радиации в атмосфере планеты. Примечания 1. Формула оптической толщины имеет вид: где τ оптическая толщина; h высота; k коэффициент ослабления; k= kп + kр, в единицах обратной длины; kп … Справочник технического переводчика

    - (Планетарный ветер) потеря газов атмосферой планет вследствие их рассеяния в космическое пространство. Основным механизм потери атмосферы, является термальный тепловое движение молекул, из за которого молекулы газов, находящиеся в сильно… … Википедия

    Содержание: Начало 0–9 А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х Ц … Википедия

    Тела естественного или искусственного происхождения, обращающиеся вокруг планет. Естественные спутники имеют Земля (Луна), Марс (Фобос и Деймос), Юпитер (Амальтея, Ио, Европа, Ганимед, Каллисто, Леда, Гималия, Лиситея, Элара, Ананке, Карме,… … Энциклопедический словарь

    Список планет вселенной Warhammer 40,000 Ниже приведен список планет вымышленной вселенной Warhammer 40000, появлявшихся в официальных материалах Games Workshop. Содержание 1 Классификация планет 2 Список планет 2.1 … Википедия

Книги

  • , Смирнов Борис Михайлович. Учебное пособие, созданное известным советским и российским физиком, посвящено трём ключевым направлениям физики атмосферы в её глобальном понимании атмосферному электричеству, стратосферному…
  • Физика глобальной атмосферы. Парниковый эффект, атмосферное электричество, эволюция климата , Смирнов Б.М.. Учебное пособие, созданное известным советским и российским физиком, посвящено трём ключевым направлениям физики атмосферы в её глобальном понимании – атмосферному электричеству,…

Земля - планета Солнечной системы, расположенная на расстоянии 150 миллионов километров от Солнца. Земля вращается вокруг него со средней скоростью 29,765 км/с. Полный оборот вокруг Солнца она совершает за период, равный 365,24 средних солнечных суток. Спутник Земли - Луна , обращается на расстоянии 384 400 км. Наклон земной оси к плоскости эклиптики 66° 33" 22", период обращения вокруг оси 23 ч 56 мин 4,1 с. Форма - геоид, сфероид. Экваториальный радиус - 6378,16 км, полярный — 6356,777 км. Площадь поверхности — 510,2 млн км 2 . Масса Земли - 6 * 10 24 кг. Объем — 1,083 * 10 12 км 3 . Гравитационное поле Земли обуславливает существование атмосферы и сферическую форму планеты.

Средняя плотность Земли равна 5,5 г/см 3 . Это почти вдвое больше, чем плотность поверхностных пород (около 3 г/см 3). С глубиной плотность возрастает. Внутренняя часть литосферы образует ядро, которое находится в расплавленном состоянии. Исследования показали, что ядро делится на две зоны: внутреннее ядро (радиус около 1300 км), которое, вероятно, является твердым, и жидкое внешнее ядра (радиус около 3400 км). Твердая оболочка тоже неоднородна, в ней имеется резкая поверхность раздела на глубине около 40 км. Эта граница называется поверхностью Мохоровичича. Область выше поверхности Мохоровичича называется корой , ниже - мантией. Мантия, как и кора, находится в твердом состоянии, за исключением отдельных лавовых «карманов». С глубиной плотность мантии нарастает от 3,3 г/см 3 у поверхности Мохоровичича и до 5,2 г/см 3 у границы ядра. На границе ядра она скачком возрастает до 9,4 г/см 3 . Плотность в центре Земли находится в пределах от 14,5 г/см 3 до 18 г/см 3 . У нижней границы мантии давление достигает 1 З00 000 атм. При спуске в шахты температура быстро повышается - примерно на 20 °С на 1 километр. Температура в центре Земли, по-видимому, не превышает 9000°С. Поскольку темп увеличения температуры с глубиной в среднем падает с приближением к центру Земли, источники тепла должны быть сосредоточены во внешних частях литосферы, скорее всего, в мантии. Единственной мыслимой причиной разогрева мантии является радиоактивный распад. 71% земной поверхности занимают океаны, образующие основную часть гидросферы. Земля - единственная планета Солнечной системы, обладающая гидросферой. Гидросфера поставляет водяной пар в атмосферу. Водяной пар благодаря инфракрасному поглощению создает значительный парниковый эффект, поднимающий среднюю температуру поверхности Земли примерно на 40°С. Наличие гидросферы сыграло решающую роль в возникновении жизни на Земле.

Химический состав атмосферы Земли на уровне моря — кислород (около 20%) и азот (около 80%). Современный состав атмосферы Земли, по-видимому, сильно отличается от первичного, который имел место 4,5 * 10 9 лет назад, когда сформировалась кора. Биосфера - растения, животные и микроорганизмы - существенно влияет как на общую характеристику планеты Земля, так и на химический состав ее атмосферы.

Луна

Диаметр Луны меньше земного в 4 раза, а масса меньше в 81 раз. Луна - небесное тело, ближе остальных расположенное к Земле.

Плотность Луны меньше, чем Земли (3,3 г/см 3). У нее отсутствует ядро, но в недрах сохраняется постоянная температура. На поверхности зафиксированы значительные перепады температуры: от +120°С в подсолнечной точке Луны до -170°С с противоположной стороны. Объясняется это, во-первых, отсутствием атмосферы, а во-вторых, продолжительностью лунного дня и лунной ночи, равной двум земным неделям.

Рельеф лунной поверхности включает низменности и гористые участки. Традиционно низменности называют «морями», хотя они и не заполнены водой. С Земли «моря» видны как темные пятна на поверхности Луны. Их названия достаточно экзотичны: море Холода, океан Бурь, море Москвы, море Кризисов и др.

Гористые участки занимают большую часть поверхности Луны и включают горные хребты и кратеры. Названия многих лунных горных хребтов аналогичны земным: Апеннины, Карпаты, Алтай. Наиболее высокие горы достигают высоты 9 км.

Кратеры занимают наибольшую площадь лунной поверхности. Некоторые из них имеют диаметр порядка 200 км (Клавий и Шиккард). некоторые - в несколько раз меньше (Аристарх, Анаксимеи).

Лунная поверхность наиболее удобна для наблюдения с Земли в местах, где граничат день и ночь, т. е. вблизи терминатора. Вообще с Земли можно видеть только одно полушарие Луны, однако возможны исключения. В результате того, что Луна движется по своей орбите неравномерно и ее форма не строго шарообразна, наблюдаются ее периодические маятникообразные колебания относительно своего центра масс. Это приводит к тому, что с Земли можно наблюдать порядка 60% лунной поверхности. Это явление носит название либрации Луны.

На Луне нет атмосферы. Звуки на ней не распространяются, поскольку отсутствует воздух.

Фазы Луны

Луна не обладает собственным свечением. поэтому видна только в той части, куда падают солнечные или отраженные Землей лучи. Этим объясняются фазы Луны. Каждый месяц Луна, двигаясь по орбите, проходит между Землей и Солнцем и обращена к нам темной стороной (новолуние). Через несколько дней на западной части неба появляется узкий серп молодой Луны. Остальная часть лунного диска в это время слабо освещена. Через 7 суток наступает первая четверть, через 14-15 — полнолуние. На 22-е сутки наблюдается последняя четверть, а через 30 суток - снова полнолуние.

Исследования Луны

Первые попытки изучить поверхность Луны состоялись достаточно давно, но непосредственно полеты на Луну начались только во второй половине XX в.

В 1958 г. состоялась первая посадка космического корабля на поверхность Луны, а в 1969 г. на нее высадились первые люди. Это были американские космонавты Н. Армстронг и Э. Олдрнн, доставленные туда космическим кораблем «Аполлон-11».

Основными целями полетов на Луну был отбор проб грунта и изучение рельефа поверхности Луны. Фотографии невидимой стороны Луны были впервые сделаны аппаратами «Луна-З» и «Луна-9». Заборы грунта производились аппаратами «Луна-16», «Луна-20» и др.

Морские приливы и отливы на Земле.

На Земле приливы и отливы чередуются в среднем каждые 12 ч 25 мин. Явление приливов и отливов связано с притяжением Земли к Солнцу и Луне. Но в связи с тем, что расстояние до Солнца слишком велико (150 * 10 6 км), солнечные приливы и отливы значительно слабее, чем лунные.

На участке нашей планеты, который обращен к Луне, сила притяжения больше, а на периферическом направлении меньше. В результате этого водная оболочка Земли растягивается вдоль линии, соединяющей Землю с Луной. Поэтому в части Земли, обращенной к Луне, вода Мирового океана выпучивается (возникает прилив). Вдоль круга, плоскость которого перпендикулярна линии Земля-Луна и проходит через центр Земли, уровень воды в Мировом океане понижается (возникает отлив).

Приливы и отливы тормозят вращение Земли. По расчетам ученых раньше земные сутки составляли не более б часов.

Меркурий

  • Расстояние от Солнца — 58 * 10 6 км
  • Средняя плотность — 54 200 кг/м 3
  • Масса — 0,056 массы Земли
  • Период обращения вокруг Солнца — 88 земных суток
  • Диаметр — 0.4 диаметра Земли
  • Спутники - нет
  • Физические условия:

  • Ближайшая планета к Солнцу
  • Атмосфера отсутствует
  • Поверхность усеяна кратерами
  • Диапазон суточных температур составляет 660°С (от +480°С до -180°С)
  • Магнитное поле в 150 раз слабее земного

Венера

  • Расстояние от Солнца — 108 * 10 6 км
  • Средняя плотность - 5240 кг/м 3
  • Масса — 0,82 массы Земли
  • Период обращения вокруг Солнца - 225 земных суток
  • Период обращения вокруг собственной оси — 243 суток, вращение обратное
  • Диаметр — 12 100 км
  • Спутники - нет

Физические условия

Атмосфера плотнее земной. Состав атмосферы: углекислый газ - 96%, азот и инертные газы > 4%, кислород - 0,002%, водяные пары - 0,02%. Давление 95-97 атм., температура у поверхности — 470-480°С, что обусловлено наличием парникового эффекта. Планета окружена слоем облаков, состоящих из капель серной кислоты с примесями хлора и серы. Поверхность в основном гладкая, с небольшим количеством хребтов (10% поверхности) и кратеров (17% поверхности). Грунт базальтовый. Магнитного поля нет.

Марс

  • Расстояние от Солнца — 228 * 10 6 км
  • Средняя плотность — 3950 кг/м 3
  • Масса — 0.107 массы Земли
  • Период обращения вокруг Солнца — 687 земных суток
  • Период обращения вокруг собственной оси — 24 ч 37 мин 23 с
  • Диаметр — 6800 км
  • Спутники - 2 спутника: Фобос, Деймос

Физические условия

Атмосфера разреженная, давление в 100 раз меньше земного. Состав атмосферы: углекислый газ — 95%, азот - более 2%. кислород - 0,3%, водяные пары — 1%. Диапазон суточных температур составляет 115°С (от +25°С днем до -90°С ночью). В атмосфере наблюдаются редкие облака и туман, что свидетельствует о выделениях влаги из резервуаров грунтовых вод. Поверхность усеяна кратерами. Грунт включает фосфор, кальций, кремний, а также оксиды железа, придающие планете красный цвет. Магнитное поле слабее земного в 500 раз.

Юпитер

  • Расстояние от Солнца - 778 * 10 6 км
  • Средняя плотность - 1330 кг/м 3
  • Масса - 318 масс Земли
  • Период обращения вокруг Солнца - 11,86 лет
  • Период обращения вокруг своей оси - 9 ч 55 мин 29 с
  • Диаметр — 142 000 км
  • Спутники - 16 спутников. Ио, Ганнмед, Каллисто, Европа — самые крупные
  • 12 спутников вращаются в одну сторону а 4 - в противоположную

Физические условия

Атмосфера содержит 90% водорода, 9% гелия и 1% других газов (в основном аммиак). Облака состоят из аммиака. Излучение Юпитера в 2,9 раза превосходит энергию, получаемую от Солнца. Планета сильно расплющена у полюсов. Полярный радиус на 4400 км меньше экваториального. На планете формируются крупные циклоны со временем жизни до 100 тысяч лет. Большое Красное Пятно, наблюдаемое на Юпитере, — пример такого циклона. В центре планеты, возможно, есть твердое ядро, хотя основная масса планеты в жидком состоянии. Магнитное поле в 12 раз сильнее земного.

Сатурн

  • Расстояние от Солнца — 1426 * 10 6 км
  • Средняя плотность — 690 кг/м 3
  • Масса - 95 масс Земли
  • Период обращения вокруг Солнца - 29,46 лет
  • Период обращения вокруг своей оси - 10 ч 14 мин
  • Диаметр — 50 000 км
  • Спутники - порядка 30 спутников. Большинство ледяные.
  • Некоторые: Пандора, Прометей, Янус, Эпиметея, Диона, Елена, Мимас, Энцелау, Тефня, Рея, Титан, Янет, Феба.

Физические условия

Атмосфера содержит водород, гелий, метан, аммиак. Получает от Солнца в 92 раза меньше тепла, чем Земля, 45% этой энергии отражает. Выделяет тепла в 2 раза больше, чем получает. У Сатурна имеются кольца. Кольца разделены на сотни отдельных колечек. Открыты X. Гюйгенсом. Кольца не сплошные. Имеют метеоритную структуру, т. е. состоят из твердых частиц различных размеров. Магнитное поле сравнимо с земным.

Уран

  • Расстояние от Солнца - 2869 * 10 6 км
  • Средняя плотность - 1300 кг/м 3
  • Масса - 14,5 массы Земли
  • Период обращения вокруг Солнца - 84,01 года
  • Период обращения вокруг собственной оси -16 ч 48 мин
  • Экваториальный диаметр - 52 300 км
  • Спутники - 15 спутников. Некоторые из них: Оберон (самый далекий и второй по величине), Миранда, Корделия (самый близкий к планете), Ариэль, Умбриэль, Титания
  • 5 спутников движутся в направлении вращения планеты вблизи плоскости ее экватора по почти круговым орбитам, 10 обращаются вокруг Урана внутри орбиты Миранды

Физические условия

Состав атмосферы: водород, гелий, метан. Температура атмосферы -150°С по радиоизлучению. В атмосфере обнаружены метановые облака. Недра планеты горячие. Ось вращения наклонена под углом 98°. Обнаружено 10 темных колец, отделенных промежутками. Магнитное поле в 1,2 раза слабее земного н простирается на 18 радиусов. Имеется радиационный пояс.

Нептун

  • Расстояние от Солнца - 4496 * 10 6 км
  • Средняя плотность - 1600 кг/м 3
  • Масса - 17,3 массы Земли
  • Период обращения вокруг Солнца - 164,8 лет
  • Спутники - 2 спутника: Тритон, Нереида

Физические условия

Атмосфера протяженная и состоит из водорода (50%), гелия (15%), метана (20%), аммиака (5%). Температура атмосферы около -230°С по расчетам, а по радиоизлучению -170°С. Это свидетельствует о горячих недрах планеты. Открыл Нептун 23 сентября 1846 г. И. Г. Галлев из Берлинской обсерватории при помощи расчетов астронома Ж. Ж. Леверье.

Плутон

  • Расстояние от Солнца — 5900 * 10 6
  • Средняя плотность — 1000—1200 кг/м 3
  • Масса — 0,02 массы Земли
  • Период обращения вокруг Солнца - 248 лет
  • Диаметр — 3200 км
  • Период обращения вокруг своей оси - 6,4 суток
  • Спутники - 1 спутник - Харон, был открыт в 1978 г. Дж. У. Крнсти из Морской лаборатории в Вашингтоне.

Физические условия

Не обнаружено видимых признаков атмосферы. Над поверхностью планеты максимальная температура -212°С, а минимальная -273°С. Поверхность Плутона предположительно покрыта слоем метанового льда, также возможен водный лед. Ускорение свободного падения на поверхности составляет 0,49 м/с 2 . Скорость движения Плутона по орбите 16.8 км/ч.

Плутон был открыт в 1930 г. Клайдом Томбо и назван по имени древнегреческого бога подземного царства, поскольку скудно освещен Солнцем. Харон по представлению древних греков - перевозчик умерших в царство мертвых через реку Стикс.

У всех планет земной группы - Меркурия, Венеры, Земли и Марса есть общее в строении -литосфера, которая как бы отвечает твердому агрегатному состоянию вещества. У трех планет: Венеры, Земли и Марса имеется атмосфера, а гидросфера установлена пока лишь на нашей планете. На рис. 5 показано строение планет земной группы и Луны, а в табл. 2 -характеристика атмосферы планет земной группы.[ ...]

В нижней части атмосферы планеты стратификация близка к адиабатической (см. ), когда с1р/с1г = -др/(?а, где с2 = 7КТ/¡1 - квадрат скорости звука. Взяв, кроме уже употреблявшихся величин, 7 = = ср/су = 1,3 и /1 = 44 (углекислый газ), найдем, что в нижней части атмосферы планеты г « 1500 км, что примерно вчетверо меньше радиуса планеты.[ ...]

Малая плотность планет-гигантов (у Сатурна она меньше плотности воды) объясняется тем, что они в основном состоят из газообразных и жидких веществ, преимущественно водорода и гелия. Этим они похожи на Солнце и многие другие звезды, водорода и гелия в массе которых примерно 98 %. Атмосфера планет-гигантов содержит различные соединения водорода, например метан и аммиак.[ ...]

1.1
2

Общее увеличение концентрации С02 в атмосфере планеты часто рассматривают как источник опасности для климата. Поглощение тепловых лучей диоксидом углерода может помешать их отражению от поверхности Земли и привести к общему повышению температуры. Однако данных по этому вопросу нет; иногда указывается, что такой эффект может быть компенсирован уменьшением излучаемого солнцем тепла вследствие увеличения содержания в воздухе пыли и аэрозолей.[ ...]

Ракеты, выносящие приборы за пределы атмосферы планеты и ее магнитосферы, позволяют преодолеть и основную слабость земной астрономии - невозможность наблюдений с Земли области спектра электромагнитных волн короче 300 нм, которые полностью поглощаются в толще воздушной оболочки. На наших глазах рождаются новые направления древней науки - рентгеновская астрономия, гамма-астрономия, ведутся наблюдения во всем спектре излучений, посылаемых Вселенной. В число этих новых направлений, тесно связанных с экологическими проблемами, входят следующие.[ ...]

Суммарное количество диоксида углерода в атмосфере планеты составляет не менее 2,3- 1012т, в то время как содержание его в Мировом океане оценивается в 1,3-10й т. В литосфере в связанном состоянии находится 2-1017 т диоксида углерода. Значительное количество диоксида углерода содержится и в живом веществе биосферы (около 1,5-1012 т, т.е. почти столько, сколько во всей атмосфере).[ ...]

Но и планетная астрономия ясно выявляет, что атмосферы планет не могут быть объяснены (как это ясно теперь и для земной атмосферы) на основании их химического состава как производные всемирного тяготения и солнечного излучения два фактора, которые астрономами до сих пор только и принимаются во внимание. Из последних сводок английских и американских астрономов Ресселя, Вильдта, Сп. Джонса, Джинса и других ясно это вытекает.[ ...]

Нельзя забывать, что биогенное происхождение атмосферы нашей Земли является эмпирическим обобщением, т. е. логическим выводом из точных данных научного наблюдения, причем химический анализ тропосферы и стратосферы резко противоречит тому логическому выводу, который вытекает из астрономической теории происхождения атмосфер планет в приложении ее к Земле. Если бы эта теория была верна, то количество кислорода с высотой должно было бы уменьшаться по отношению к азоту, тогда как на больших высотах (до 40 км), где это должно было бы резко сказываться, такого уменьшения кислорода по отношению к азоту не наблюдается. Отношение О2 к N2 остается неизменным, как в высоких слоях тропосферы, так и в нижних слоях стратосферы.[ ...]

Если был бы известен точный химический состав атмосферы Венеры, сравнивая найденное значение п с показателем адиабаты - ср/су для смеси газов, составляющих атмосферу планеты, можно было бы судить о характере стратификации атмосферы. При п [ ...]

Взвешенные твердые частицы, по First (1973), поступают в атмосферу планеты в результате естественных процессов (до 2200- 10а т/год частиц размером менее 20 мкм) и деятельности человека (до 415- 106 т/год). Следует при этом отметить, что поступление частиц в воздух в результате деятельности человека приурочено в основном к местам его расселения и особенно большим и крупным городам. Твердые взвеси как результат этой деятельности образуются при сжигании различных видов топлива, дезинтеграции твердых материалов, при перегрузке и транспортировке пылящих материалов, поднимаются с поверхности городской территории. Основными источниками поступления этих веществ в воздушный бассейн города являются различные крупные и мелкие энергетические установки, предприятия металлургии, машиностроения, стройматериалов, коксохимии и транспорт.[ ...]

Излишне говорить, чтод существование свободного кислорода в атмосфере планет может свидетельствовать о наличии на них жизни: на Земле возникновение кислородной атмосферы было тоже связано с зарождением жизни. Так, изучение озона входит в контакт с одной из замечательных проблем современной космогонии.[ ...]

Фотохимические реакции не являются единственными реакциями в атмосфере. Там происходят многочисленные превращения с участием десятков тысяч химических соединений, течение которых ускоряется радиацией (солнечная радиация, космическое излучение, радиоактивное излучение), а также каталитическими свойствами присутствующих в воздухе твердых частиц и следов тяжелых металлов. Значительные изменения претерпевают попадающие в воздух диоксид серы и сероводород, галогены и межгалогенные соединения, оксиды азота и аммиак, альдегиды и амины, сульфиды и меркаптаны, нитросоединения и олефины, полиядерные ароматические углеводороды и пестициды. Иногда эти реакции могут служить причиной не только качественных, но и количественных изменений в глобальном составе атмосферы планеты, приводящих к изменению климата на Земле. Аккумулируясь в верхних слоях атмосферы, фтор-хлоруглеводороды фотолитически разлагаются с образованием оксидов хлора, которые взаимодействуют с озоном, уменьшая его концентрацию в стратосфере . Аналогичный эффект наблюдается и при реакциях озона с оксидами серы, оксидами азота и углеводородами. В результате разложения вносимых в почву азотных удобрений происходит эмиссия в атмосферу оксида азота N0, который взаимодействует с атмосферным озоном, превращая его в кислород. Все эти реакции уменьшают содержание озона в слоях атмосферы на высоте 20-40 км, которые защищают приземный слой атмосферы от солнечной радиации высокой энергии. Подобные превращения приводят к глобальным изменениям климата планеты.[ ...]

Несмотря на столь высокие уровни З.а., РФ не является главным загрязнителем атмосферы планеты (табл. 18).[ ...]

Существует гипотеза неорганического происхождения свободного кислорода в атмосфере Земли. Согласно этой гипотезе, существование в верхних слоях атмосферы процесса разложения молекул воды на водород и кислород под действием жестких космических излучений должно иметь следствием постепенную утечку легкого, подвижного водорода в космическое пространство и накопление в атмосфере свободного кислорода, что без всякого участия жизни должно восстановительную первичную атмосферу планеты превратить в окислительную. По расчетам, этот процесс мог за 1-1,2 млрд. лет создать на Земле окислительную атмосферу. Но он неизбежно идет и на других планетах Солнечной системы, причем в течение всего времени их существования, а это примерно 4,5 млрд. лет. Тем не менее ни на одной планете нашей системы, кроме Земли и, с несравненно меньшим содержанием кислорода, Марса, практически нет свободного кислорода и до сих пор их’атмосферы сохраняют восстановительные свойства. Очевидно, и на Земле этот процесс мог повысить содержание окислов углерода и азота в атмосфере, но не настолько, чтобы сделать ее окислительной. Так что наиболее правдоподобной остается гипотеза, связывающая наличие на Земле свободного кислорода с деятельностью фотосинтезирующих организмов.[ ...]

Для запахов совершенно не изучена их роль в переносе в газообразной форме в атмосферу таких более тяжелых атомов, как мышьяк, сера, селен и др. Сейчас можно это только отметить. Как я уже указывал, химическое количественное изучение атмосфер планеты является одной из отсталых геохимических проблем.[ ...]

В заключение полезно привести некоторые сведения о магнитосферах и ионосферах других планет. Отличия от земной ионосферы обусловлены химическим составом атмосфер планет и разницей расстояний от Солнца. Днем максимум электронной концентрации на Марсе составляет 2 105 см-3 на высоте 130- 140 км, на Венере - 5 106 см-3 на высоте 140-150 км. На Венере, лишенной магнитного поля, днем существует низко расположенная плазмопауза (300 км), что обусловлено действием солнечного ветра. На Юпитере с его сильным магнитным полем обнаружены полярные сияния и радиационный пояс, значительно более интенсивные, чем на Земле.[ ...]

Диоксид углерода СОг является не токсичным, но вредным веществом в связи с фиксируемым повышением его концентрации в атмосфере планеты и его влиянием на изменение климата (см. гл. 5). Предпринимаются шаги по регламентированию его выброса объектами энергетики, промышленности и транспорта.[ ...]

Прогрессивное увеличение количества кислорода в воде вследствие деятельности фотосинтезирующих организмов и его диффузия в атмосферу вызвали изменения в химическом составе оболочек Земли, и, прежде всего атмосферы, что в свою очередь сделало возможным быстрое распространение жизни по планете и появление более сложно организованных жизненных форм. По мере увеличения содержания кислорода в атмосфере формируется достаточно мощный слой озона, который защищает поверхность Земли от проникновения жесткого ультрафиолетового и космического изучений. В таких условиях жизнь смогла продвинуться к поверхности моря. Развитие механизма аэробного дыхания сделало возможным появление многоклеточных организмов. Первые такие организмы появились после того, как концентрация кислорода в атмосфере планеты достигла 3%, что произошло 600 млн лет назад (начало кембрийского периода).[ ...]

Газовая оболочка спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Верхние слои атмосферы частично поглощают, частично рассеивают эти лучи. Атмосфера защищает нас и от «звездных осколков». Метеориты, в подавляющем большинстве не превышающие по величине горошину, под влиянием земного притяжения с огромной скоростью (от 11 до 64 км/с) врезаются в атмосферу планеты, раскаляются там в результате трения о воздух и на высоте около 60-70 км по большей части сгорают. Атмосфера защищает Землю и от крупных космических осколков.[ ...]

Сложившийся характер потребления сырьевых ресурсов приводит к неудержимому росту объема отходов. Огромное количество их попадает в атмосферу в виде пылегазовых выбросов и со сточными водами в водоемы, что отрицательно сказывается на состоянии окружающей среды. Более всего загрязняют атмосферу теплоэнергетика, черная и цветная метллургия, химическая промышленность.[ ...]

Перед изложением теории следует упомянуть идею неконтролируемого «парникового эффекта», предложенную Рейсулом и Де Бергом в связи с теорией эволюции атмосфер планет. Предварительно следует объяснить столь сильные различия между атмосферами Венеры, Земли и Марса.[ ...]

Анализ динамики спуска автоматической межпланетной станции (АМС) на парашюте дает дополнительное средство контроля внутренней согласованности данных об атмосфере планеты, если одновременно производятся измерения, по крайней мере, двух любых термодинамических параметров атмосферы из трех, связанных уравнением состояния газа. Описываемая ниже методика будет применена в целях иллюстрации ее использования для анализа и проверки согласованности данных, полученных во время спуска АМС «Венера-4» (см. ).[ ...]

Катастрофичной в данное время является вырубка1 тропических лесов, которые являются одним из крупнейших источников кислорода, жизненно важного ресурса нашей планеты, возобновляемого биотой. Тропические леса исчезают в силу того, что население в этих районах быстро увеличивается. Из-за угрозы голода люди в погоне за небольшими урожаями используют под поля и огороды любые клочки земли, вырубая для этого древние тропические леса, деревья, кустарники. В случае уничтожения лесов в экваториальной зоне, Амазонии и, как следствие, снижения содержания кислорода в атмосфере планеты человечество и само существование биосферы2 окажутся под угрозой гибели от гипоксии.[ ...]

Подчеркнем теперь, что все указывавшиеся в этом параграфе формулы содержали лишь шесть истинно «внешних» размерных параметров: усваиваемый поток солнечной радиации q, радиус планеты а, угловая скорость ее вращения

При этом центральное место на переговорах по глобальным климатическим изменениям занимают США не столько из-за политического или экономического веса, сколько из-за доли выбросов в атмосферу планеты; вклад этой страны составляет 25%, так что любые международные соглашения без их участия почти бессмысленны. В отличие от европейских стран США крайне осторожны и неактивны, что связано с ценой, которую они должны будут заплатить за снижение выбросов С02.[ ...]

С середины 1970-х гг. Голицын занялся разработкой теории конвекции, в том числе с учетом вращения. Эта тематика имеет приложения ко многим природным объектам: к мантии Земли и ее жидкому ядру, атмосферам планет и звезд, к океану. Для всех этих объектов получены простые формулы, объясняющие данные наблюдений или результаты численного моделирования. Им развита теория и организован цикл экспериментальных работ по конвекции вращающейся жидкости. На этой основе объяснены сила ветров и размеры тропических и полярных ураганов.[ ...]

То же происходит в странах Африки, в Индонезии, на Филиппинах, в Таиланде, Гвинее. Тропические леса, покрывающие 7% земной поверхности в районах, близких к экватору, и играющие важнейшую роль в обогащении атмосферы планеты кислородом и в поглощении углекислого газа, сводятся со скоростью 100 тыс. км2 в год.[ ...]

Мы еще не располагаем вполне убедительными доказательствами существования жизни вне Земли, или, как ее называет Ледерберг (1960), «экзобиологии», но все то, что мы узнали о среде на Марсе и на других имеющих атмосферу планетах, не исключает такой возможности. Хотя температурные и другие физические условия среды на этих планетах экстремальны, они не выходят за пределы толерантности некоторых из самых устойчивых обитателей Земли (бактерий, вирусов, лишайников и др.), особенно если считать вероятным наличие более мягкого микроклимата под поверхностью или в защищенных областях. Можно, однако, считать установленным, что на других планетах солнечной системы нет крупных «пожирателей кислорода», таких, как люди или динозавры, так как в атмосфере этих планет кислорода очень мало или нет совсем. Теперь ясно, что зеленые области и так называемые «каналы» Марса - это не растительность и не работа разумных существ. Однако на основе данных спектроскопических наблюдений темных областей Марса в инфракрасных лучах можно считать, что там имеется органическое вещество, а недавние автоматические межпланетные станции («Маринер-6» и «Маринер-7») обнаружили на этой планете аммиак, имеющий, возможно, биологическое происхождение.[ ...]

Изучение океана как физической и химической системы продвигалось значительно быстрее, чем его изучение как биологической системы. Гипотезы о происхождении и геологической истории океанов, вначале спекулятивные, приобрели прочную теоретическую основу.[ ...]

В этой связи следует остановиться на имеющихся теоретических моделях развития ядер-ных инцидентов в военном аспекте. Модели учитывают количество энергии,накопленной в виде термоядерных зарядов и на атомных электростанциях, и дают ответ на вопрос о том, как изменились бы климатические условия в масштабе всей планеты по истечении одного года после ядерной войны. Конечные вьюоды сводились к следующему. Реакция атмосферы приведет к ситуации, аналогичной ситуации с атмосферой на Марсе, где пыль продолжает разноситься по всей атмосфере планеты спустя 10 дней после начала пыльных бурь, что резко ослабляет солнечную радиацию. Вследствие этого марсианская суша остывает на 10 - 15 °С, а запыленная атмосфера нагревается на 30 °С (по сравнению с обычными условиями). Это признаки так называемой "ядерной зимы", конкретные показатели которой сегодня трудно предсказать. Однако совершенно очевидно, что условия для существования высших форм организации живой материи будут резко изменены.[ ...]

В настоящее время тенаксы пользуются чрезвычайно большой популярностью у аналитиков: их применяют для концентрирования из воздуха (и воды после выдувания примесей, см. раздел 6) микропримесей ЛОС в газовой хроматографии и ГХ/МС-анализе при исследовании воздуха городов и жилых помещений, определении качества воздуха рабочей зоны и административных зданий, выхлопных газов автотранспорта и выбросов промышленных предприятий, атмосферы отсеков орбитальных космических аппаратов и подводных лодок, атмосферы планет и др.[ ...]

В концепции «отрицательной вязкости» одним из основных является вопрос, откуда черпают энергию сами крупномасштабные вихри, поддерживающие зональную циркуляцию, в данном случае - дифференциальное вращение. Существует принципиальная возможность , что энергия к ним поступает непосредственно от мелкомасштабной конвекции, однако физически этот механизм не вполне ясен и тем более трудно как-то количественно оценить его эффективность. К подобного рода возможностям от носится и гипотеза о неизотропно-сти турбулентной вязкости. Другая возможность, осуществляющаяся в атмосферах планет, заключается в переносе не кинетической, а потенциальной энергии с последующим превращением ее в кинетическую. Как уже говорилось, благодаря влиянию собственного вращения Солнца средняя температура на определенных горизонтальных (эквипотенциальных) уровнях может быть неодинаковой на всех широтах, что должно приводить к возникновению крупномасштабных движений, переносящих в конце концов тепло к более холодным широтам . Эта вторая возможность по существу перекликается с идеями Фогта и Эддингтона . Все эти обстоятельства позволяют говорить о близости некоторых основных черт атмосферной циркуляции на Солнце и планетах.[ ...]

Регламентации и ограничения устанавливаются на местном, региональном и федеративном уровнях. Они должны иметь совершенно определенную территориальную привязку. В долгосрочном планировании следует использовать прогностические и даже эколого-футурологические исследования с целью выявления потенциальных регламентирующих факторов природопользования, в т. ч. лимитов выбросов веществ, в настоящее время не ограничиваемых. Так, двуокись углерода в настоящее время не отнесена к веществам, загрязняющим атмосферный воздух. По мере увеличения валового выброса этого соединения в атмосферу планеты и уменьшения суммарной фотосинтетической способности лесов, вследствие их варварской вырубки, непременно даст себя знать «парниковый эффект», который угрожает перерасти в глобальную экологическую катастрофу. Показателен в этом плане пример американской частной энергетической компании «Эпплайд энерджи сервисес», находящейся в Вирджинии, которая пожертвовала в 1988 г. 2 млн долл. на посадку деревьев в Гватемале в качестве компенсации за тепловую угольную электростанцию, которую компания строит в штате Коннектикут. Ожидается, что посаженные деревья будут поглощать примерно столько же углекислого газа, сколько новая электростанция будет выбрасывать в атмосферу, предотвращая, таким образом, возможное глобальное потепление.[ ...]

ПЛАТА ЗА ПРИРОДНЫЕ РЕСУРСЫ - денежное возмещение природопользователем общественных затрат на изыскание, сохранение, восстановление, изъятие и транспортировку используемого природного ресурса, а также потенциальных усилий общества для натурального возмещения или адекватной замены эксплуатируемого ресурса в будущем. Такая плата должна включать издержки, связанные с межресурсными связями. С эколого-экономической точки зрения эту плату следует исчислять и с учетом глобально-регионального воздействия природопользователей на природные системы (например, крупное изъятие леса ведет к нарушению не только местного водного баланса, но и всего газового состава атмосферы планеты). Существующие методики определения размеров платы пока не учитывают всех факторов, воздействующих на эколого-экономический механизм ее формирования.[ ...]

Энергия ветра - одно из наиболее древних используемых источников энергии. Она широко применялась для привода мельниц и водоподъемных устройств в глубокой древности в Египте и на Ближнем Востоке. Затем энергия ветра стала использоваться для перемещения судов, лодок, улавливаться парусами. В Европе ветряные мельницы появились в XII в. Паровые машины заставили забыть на длительное время ветряные установки. Кроме того, низкие единичные мощности агрегатов, настоящая зависимость их работы от погодных условий, а также возможность преобразовывать энергию ветра только в ее механическую форму ограничили широкое использование этого природного источника. Энергия ветра в конечном итоге - результат тепловых процессов, происходящих в атмосфере планеты. Различия плотностей нагретого и холодного воздуха - причина активных изменений воздушных масс. Первоначальным источником энергии ветра, является энергия солнечного излучения, которая переходит в одну из своих форм - энергию воздушных течений.

Ближайшая к Солнцу и наименьшая планета системы, всего 0.055% от размера Земли. 80% ее массы составляет ядро. Поверхность камениста, изрезана кратерами и воронками. Атмосфера сильно разрежена, состоит из углекислого газа. Температура солнечной стороны составляет +500оС, обратной стороны -120оС. Гравитационного и магнитного поля на Меркурии нет.

Венера

Венера обладает очень плотной атмосферой, состоящей из двуокиси углерода. Температура поверхности достигает 450оС, что объясняется постоянным парниковым эффектом, давление порядка 90 Атм. Размер Венеры равняется 0.815 размера Земли. Ядро планеты сложено из железа. На поверхности имеется небольшое количество воды, а также множество метановых морей. У Венеры отсутствуют спутники.

Планета Земля

Единственная во Вселенной планета, на которой существует жизнь. Почти 70% поверхности покрыто водой. Атмосфера состоит из сложной смеси кислорода, азота, углекислого и инертных газов. Гравитация планеты имеет идеальную величину. Если она была бы меньшей – кислород бы в , если большей – водород собрался бы на поверхности, и жизнь не смогла существовать.

Если увеличить расстояние от Земли до Солнца на 1% - океаны замерзнут, если уменьшить на 5% - вскипят.

Марс

Из-за большого содержания окиси железа в грунте, Марс имеет ярко красный цвет. Его размер в 10 раз меньший, чем земной. Атмосфера состоит из углекислого газа. Поверхность покрыта кратерами и потухшими вулканами, наивысший из которых Олимп, его высота составляет 21.2 км.

Юпитер

Наибольшая из планет Солнечной системы. Крупнее Земли в 318 раз. Состоит из смеси гелия и водорода. Внутри Юпитер разжарен, и поэтому в его атмосфере преобладают вихревые структуры. Имеет 65 известных спутников.

Сатурн

Структура планеты схожа с Юпитером, но прежде всего, Сатурн известен благодаря системе колец. Сатурн в 95 раз крупнее Земли, но его плотность наименьшая среди Солнечной системы. Его плотность приравнивается к плотности воды. Имеет 62 известных спутника.

Уран

Уран крупнее Земли в 14 раз. Уникален своим вращением «на боку». Наклон его оси вращения равняется 98о. Ядро Урана очень холодное, поскольку отдает все тепло в космос. Имеет 27 спутников.

Нептун

Крупнее Земли в 17 раз. Излучает большое количество тепла. Проявляет невысокую геологическую активность, на его поверхности находятся гейзеры из . Имеет 13 спутников. Планету сопровождают так званые «Нептунские троянцы», которые являются телами астероидного характера.

В атмосфере Нептуна содержится большое количество метана, это придает ему характерный синий цвет.

Особенности планет Солнечной системы

Отличительной чертой планет Солнечной факт их вращения не только вокруг Солнца, но еще и по своей оси. Также все планеты в большей или меньшей степени являются теплыми .

Связанная статья

Источники:

  • Планеты Солнечной системы

Солнечная система - совокупностью космических тел, взаимодействие между которыми объясняют законы гравитации. Солнце является центральным объектом Солнечной системы. Находясь от Солнца на разном расстоянии, планеты вращаются почти в одной плоскости, в одном направление по эллиптическим орбитам. 4,57 млрд лет назад произошло рождение Солнечной системы как результат мощного сжатия облака газа и пыли.

Солнце - это огромная раскаленная звезда, преимущественно состоящая из гелия и водорода. По эллиптическим орбитам вокруг Солнца вращается всего 8 планет, 166 лун, 3 карликовых планеты. А также миллиарды комет, малых планет, мелких метеорных тел, космическая пыль.

Польский ученый и астроном Николай Коперник в середине XVI века описал общие характеристики и строение Солнечной системы. Он изменил бытующее в то время мнение о том, что Земля – центр Вселенной. Доказал, что центром является Солнце. Остальные же планеты движутся вокруг него по определенным траекториям. Законы, объясняющие движение планет, сформулировал Иоганн Кеплер в XVII веке. Исаак Ньютон, физик и экспериментатор, обосновал закон всемирного притяжения. Однако детально изучить основные свойства и характеристики планет и объектов Солнечной системы смогли лишь в 1609 году. Великим Галилеем был изобретен телескоп. Это изобретение позволяло воочию наблюдать за характером планет и объектов. Галилей смог доказать, что Солнце вращается вокруг своей оси, наблюдая движение солнечных пятен.

Основные характеристики планет

Вес Солнца превышает массу других почти в 750 раз. Сила притяжения Солнца позволяет ему удерживать вокруг себя 8 планет. Их названия: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Все они вращаются вокруг Солнца по определенной траектории. Каждая из планет имеет свою систему спутников. Раньше еще одной планетой, вращающейся вокруг Солнца, был Плутон. Но современные ученые на основе новых фактов лишили Плутон статуса планеты.

Из 8 планет самой большой является Юпитер. Его диаметр приблизительно 142 800 км. Это превышает диаметр Земли в 11 раз. Планеты, ближе всего находящиеся к Солнцу, считаются планетами земного типа, или внутренними. К ним относят Меркурий, Венеру, Землю и Марс. Они, как и Земля, состоят из твердых металлов и силикатов. Это позволяет им значительно отличаться от других планет, расположенных в Солнечной системе.

Второй тип планет - Юпитер, Сатурн, Нептун и Уран. Их называют внешними, или юпитерианскими планетами. Эти планеты представляют собой планеты-гиганты. Состоят преимущественно из расплавленных водорода и гелия.

Практически вокруг всех планет Солнечной системы вращаются спутники. Около 90% спутников сосредоточено в основном на орбитах вокруг юпитерианских планет. Планеты перемещаются вокруг Солнца по определенным траекториям. Дополнительно у них также происходит вращение вокруг собственной оси.

Небольшие объекты Солнечной системы

Самыми многочисленными и маленькими телами в Солнечной системе являются астероиды. Целый пояс астероидов расположен между Марсом и Юпитером, состоит из объектов диаметром более 1 км. Скопления астероидов еще называют «астероидным поясом». Траектория полета некоторых астероидов очень близко проходит от Земли. Количество астероидов в поясе – до нескольких миллионов. Самое крупное тело – карликовая планета Церера. Это глыба неправильной формы с диаметром в поперечнике 0,5-1 км.

К своеобразной группе малых тел относятся кометы, состоящие преимущественно из обломков льда. От больших планет и их спутников они отличаются небольшим весом. Диаметр самых больших комет – всего несколько километров. Зато все кометы имеют огромные «хвосты», по объему превосходящие Солнце. Когда кометы близко подходят к Солнцу, лед испаряется и в результате сублимационных процессов вокруг кометы образуется облако пыли. Высвобожденные частички пыли под давлением солнечного ветра начинают светиться.

Еще одним космическим телом является метеор. Попадая в орбиту Земли, он сгорает, оставляя в небе светящийся след. Разновидностью метеоров являются метеориты. Это более крупные метеоры. Их траектория движения иногда близко проходит возле атмосферы Земли. Из-за нестабильности траектории движения метеоры могут падать на поверхность нашей планеты, образуя кратеры.

Еще одними объектами солнечной системы являются кентавры. Они представляют собой кометоподобные тела, состоящие из обломков льда большого диаметра. По своим характеристикам, строению и характеру движения они считаются и кометами и астероидами.

По последним данным научных исследований Солнечная система образовалась в результате гравитационного коллапса. В результате мощного сжатия образовалось облако. Под действием гравитационных сил из частичек пыли и газа образовались планеты. Солнечная система принадлежит к Галактике Млечный Путь и удалена от ее центра приблизительно на 25-35 тыс. световых лет. Повсюду во Вселенной ежесекундно рождаются системы планет, подобные Солнечной системе. И, очень возможно, в них также есть разумные существа, подобные нам.

Связанная статья

Те, кто продолжает считать, что Солнечная система включает в себя девять планет, глубоко заблуждается. Все дело в том, что в 2006 году Плутон был отчислен из большой девятки и теперь относится к разряду карликовых планет. Обычных же осталось восемь, хотя власти Иллинойса законодательно закрепили в своем штате за Плутоном прежний статус.

Инструкция

После 2006 года звание самой маленькой планеты стал носить Меркурий. Для ученых он представляет интерес как из-за необычного рельефа в виде зубчатых откосов, усыпавших всю поверхность, так и периода вращения вокруг своей оси. Оказывается, он всего на треть меньше времени полного оборота вокруг Солнца. Это происходит из-за сильного приливного воздействия светила, которое замедлило естественное вращение Меркурия.

Вторая по дальности от центра притяжения Венера знаменита своей «горячностью» - температура ее атмосферы даже больше, чем у предыдущего объекта. Эффект обусловлен имеющейся на ней парниковой системой, возникшей благодаря повышенной плотности и преобладанию углекислого газа.

Третья планета – Земля – является местом обитания людей, и пока что она единственная, где точно зафиксировано присутствие жизни. У нее есть то, чего нет у предыдущих двух – спутник под названием Луна, присоединившийся к ней вскоре после возникновения, а произошло это знаменательное событие около 4,5 млрд лет назад.

Самой воинственной сферой Солнечной системы можно назвать Марс: его цвет красный из-за высокого процента в почве оксида железа, геологическая активность закончилась всего 2 млн лет назад, а два спутника были привлечены насильственным образом из числа астероидов.

Пятый по удаленности от Солнца, но первый по размерам Юпитер имеет необычную историю. Считается, что у него были все задатки к превращению в коричневый карлик – небольшую звезду, ведь самая малая из этой категории превосходит его в диаметре лишь на 30%. Большие, чем есть, габариты Юпитер уже не получит: если бы его масса повышалась, это привело бы под действием гравитации к увеличению плотности.

Сатурн единственный среди всех остальных обладает заметным диском – поясом Кассини, состоящим из окруживших его мелких объектов и обломков. Как и Юпитер, он относится к классу газовых гигантов, но значительно уступает по плотности не только ему, но и земной воде. Несмотря на свою «газообразность», Сатурн имеет на одном из своих полюсов настоящее северное сияние, а его атмосфера бушует ураганами и штормами.

Следующий по списку Уран, как и его сосед Нептун, относится к разряду ледяных гигантов: его недра содержат в себе так называемый «горячий лед», от обычного отличающийся высокой температурой, но не превращающийся в пар из-за сильного сжатия. Помимо «холодного» составляющего, на Уране есть и ряд горных пород, а также сложная структура облаков.

Замыкает перечень Нептун, открытый весьма необычным способом. В отличие от остальных планет, обнаруженных методом визуального наблюдения, то есть и более сложные оптические устройства, Нептун заметили не сразу, а только благодаря странному поведению Урана. Позже путем сложных расчетов было обнаружено местонахождение оказывающего на него влияние таинственного объекта.

Совет 4: Какие планеты солнечной системы имеют атмосферу

Атмосфера Земли сильно отличается от атмосфер других планет Солнечной системы. Имея азотно-кислородную основу, земная атмосфера создает условия для жизни, которой, в силу определенных обстоятельств, не может быть на других планетах.

Инструкция

Венера – ближайшая к планета, которая имеет атмосферу, причем такой высокой плотности, что еще Михаил Ломоносов в 1761 году утверждал о ее существовании. Присутствие атмосферы у Венеры настолько очевидный факт, что вплоть до двадцатого века человечество находилось под влиянием иллюзии, будто Земля и Венера являются планетами-близнецами, и на Венере тоже возможна жизнь.

Космические исследования показали, что все далеко не так радужно. Атмосфера Венеры на девяносто пять процентов состоит из углекислого газа, и не выпускает наружу тепло от Солнца, создавая парниковый эффект. Из-за этого температура на поверхности Венеры составляет 500 градусов по Цельсию, и вероятность существования жизни на ней ничтожна.

Марс имеет схожую по составу с Венерой атмосферу, так же состоящую в основном из углекислого газа, но с примесями азота, аргона, кислорода и водяного пара, правда, в очень небольших количествах. Несмотря на приемлемую температуры поверхности Марса в определенное время суток, дышать такой атмосферой невозможно.

В защиту сторонников идей о жизни на других планетах, стоит отметить, что планетологи, исследовав химический состав пород Марса, в 2013 году заявили, что 4 миллиарда лет назад на красной планете было

Уран, как и остальные планеты-гиганты, имеет атмосферу, состоящую из водорода и гелия. Во время исследований, которые проводились с помощью аппаратов «Вояджер», была открыта интересная особенность этой планеты: атмосфера Урана не подогревается никакими внутренними источниками планеты, и всю энергию получает только от Солнца. Именно поэтому Уран имеет самую холодную атмосферу во всей Солнечной системе.

Нептун имеет газообразную атмосферу, но ее синий цвет говорит о том, что в ее составе есть неизвестное пока вещество, которое придает атмосфере из водорода и гелия такой оттенок. Теории о поглощении красного цвета атмосферы метаном, своего полного подтверждения пока не получили.

Совет 5: Какая планета Солнечной системы имеет больше всего спутников

Начало в научном исследовании спутников Юпитера было положено еще в XVII веке известным астрономом Галилео Галилеем. Он открыл первые четыре спутника. Благодаря развитию космической индустрии и запуску межпланетных исследовательских станций, стало возможно открытие мелких спутников Юпитера. В настоящее время, основываясь на информации космической лаборатории НАСА, можно с уверенностью говорить о 67-ми спутниках с подтвержденными орбитами.


Считается, что спутники Юпитера можно сгруппировать на внешние и внутренние. К внешним относятся объекты, находящиеся на значительном удалении от планеты. Орбиты же внутренних располагаются гораздо ближе.


Спутники с внутренними орбитами, или как их еще называют Юпитерианские луны – это довольно крупные тела. Ученые заметили, что устройство расположения этих лун схоже с Солнечной системой, только в миниатюре. Юпитер в этом случае выступает как бы в роли Солнца. Внешние же спутники отличаются от внутренних своими небольшими размерами.


Среди самых известных крупных спутников Юпитера можно отметить те, которые относятся к так назывемым Галилеевым спутникам. Это Ганимед (размеры в км – 5262, 4,),Европа (3121,6 км), Ио. а также Калисто (4820, 6 км).


Видео по теме