I. Разбиение на классы. Отношение эквивалентности

Определение 2.1. Назовем взаимозаменяемыми те и только те объекты некоторого данного множества М, которые обладают одним и тем же набором формальных признаков, существенных в данной ситуации.

Обозначим через М х -множество всех объектов, взаимозаменяемых с объектом х. Очевидно, что х М х и объединение всех М х (при всевозможных х из М) совпадает совсем множеством М:

Предположим, что. Это значит, что существует некоторый элемент z, такой, что он одновременно принадлежит и и. Значит x взаимозаменяем с z и z взаимозаменяем с у. Следовательно, х взаимозаменяем с у, а значит и с любым элементом из. Таким образом. Аналогично показывается и обратное включение. Таким образом, встречающиеся в объединении (2.1) множества либо не пресекаются, либо целиком совпадают.

Определение 2.2. Систему непустых подмножеств {M 1 , M 2 ,….} множества М мы будем называть разбиением этого множества, если

Сам множества при этом называются классами разбиения.

Определение 2.3. Отношение с на множестве М называется эквивалентностью (или отношением эквивалентности), если существует такое разбиение {M 1 , M 2 ,….} множества М такое, что (х, у) выполняется тогда и только тогда, когда х и у принадлежат к некоторому общему классу M i данного разбиения.

Пусть {M 1 , M 2 ,….} разбиение множества М. Определим, исходя из этого разбиения, отношение с на М: (х, у),если х и у принадлежат к некоторому общему классу M i данного разбиения. Очевидно, что отношение с является эквивалентностью. Назовем с отношением эквивалентности, соответствующим данному разбиению.

Определение 2.4. Если в каждом подмножестве M i выбрать содержащийся в нем элемент х i , то этот элемент будем называть эталоном для всякого элемента у, входящего в тоже множество M i . По определению, положим выполненным отношение с* «быть эталоном» (х i , у)

Легко видеть, что эквивалентность с, соответствующая данному разбиению, может быть определена и так: (z, у) если z и у имеют общий эталон (х i , z) и (х i , у).

Пример 2.1: Рассмотрим в качестве М множество целых неотрицательных чисел и возьмем его разбиение на множество М 0 четных чисел и множество М 1 - нечетных. Соответствующее отношение эквивалентности на множестве целых чисел обозначается так:

и читается: n сравнимо с m по модулю 2. В качестве эталонов естественно выбрать 0 - для четных чисел и 1 - для нечетных. Аналогично, разбивая то же множество М на k подмножеств M 0 , M 1 ,… M k-1 , где M j состоит из всех чисел, дающих при делении на k в остатке j, мы придем к отношению эквивалентности:

которое выполняется, если n и m имеют одинаковые остатки при делении на k.

В качестве эталона в каждом M j естественно выбрать соответствующий остаток j.

II. Фактор-множество

Пусть - отношение эквивалентности. Тогда по теореме, существует разбиение {M 1 , M 2 ,….} множества М на классы эквивалентных друг другу элементов - так называемые классы эквивалентности.

Определение 2.5. Множество классов эквивалентности по отношению обозначают М/ и читают фактор-множество множества М по отношению.

Пусть ц: M > S - сюрьективное отображение множества М на некоторое множество S.

Для всякого ц: M > S - сюрьективного отображения существует такое отношение эквивалентности на множестве М, что М/ и S могут быть поставлены во взаимно однозначное соответствие.

III. Свойства эквивалентности

Определение 2.6. Отношение с на множестве М называется эквивалентностью (отношением эквивалентности), если оно рефлексивно, симметрично и транзитивно.

Теорема 2.1: Если отношение с на множестве М рефлексивно, симметрично и транзитивно, существует такое разбиение {M 1 , M 2 ,….} множества М такое, что (х, у) выполняется тогда и только тогда, когда х и у принадлежат к некоторому общему классу M i данного разбиения.

Обратно: Если задано разбиение {M 1 , M 2 ,….} и бинарное отношение с задано как «принадлежать к общему классу разбиения», то с рефлексивно, симметрично и транзитивно.

Доказательство:

Рассмотрим рефлексивное, симметричное и транзитивное отношение с на М. Пусть для любого состоит из всех таких z, для которых (x, z) с

Лемма 2.1: Для любых x и y либо либо

Из леммы и рефлексивности отношения с следует, что множества вида образуют разбиение множества М. (Это разбиение естественно назвать разбиением, соответствующим исходному отношению). Пусть теперь (x, y) с. Это значит, что y. Но и х в силу (x, х) с. Следовательно, оба элемента входят в. Итак, если (x, y) с, то х и у входят в общий класс разбиения. Наоборот, пусть uи v. Покажем, что (u, v) с, Действительно, имеем (x, u) с и (x, v) с. Отсюда по симметричности (u, x) с. По транзитивности из (u, x) с и (x, v) с следует (u, v) с. Первая часть теоремы доказана.

Пусть дано разбиение {M 1 , M 2 ,….} множества М. Т.к. объединение всех классов разбиения совпадает с М, то любой хвходит в некоторый класс. Отсюда следует, что (x, х) с, т.е. с - рефлексивно. Если x и y входят в некоторый класс, то y и x входят в тот же класс. Это означает, что из (x, y) с вытекает (y, x) с, т.е. отношение симметрично. Пусть теперь выполнено (x, y) с и (y, z) с. Это означает, что x и y входят в некоторый класс, а y и z входят в некоторый класс. Классы имеют общий элемент у, а, следовательно, совпадают. Значит x и z входят в класс, т.е. выполняется (x, z) с и отношение транзитивно. Теорема доказана.

IV. Операции над эквивалентностями.

Определим здесь некоторые теоретико-множественные операции над эквивалентностями и приведем без доказательств их важные свойства.

Вспомним, что отношение - это пара (), где М - множество элементов, вступающих в отношение, а - множество пар, для которых отношение выполнено.

Определение 2.7. Пересечением отношений (с 1 , М) и (с 2 , М) назовем отношение, определенное пересечением соответствующих подмножеств. (x, y) с 1 с 2 тогда и только тогда, когда одновременно (x, y) с 1 и (x, y) с 2 .

Теорема 2.2: Пересечение с 1 с 2 эквивалентностей с 1 с 2 само является отношением эквивалентности.

Определение 2.8. Объединением отношений (с 1 , М) и (с 2 , М) назовем отношение, определенное объединением соответствующих подмножеств. (x, y) с 1 с 2 тогда и только тогда, когда (x, y) с 1 или (x, y) с 2 .

Теорема 2.3: Для того, чтобы объединение с 1 с 2 эквивалентностей с 1 с 2 само по себе было отношением эквивалентности необходимо и достаточно, чтобы

с 1 с 2 =с 1 с 2

Определение 2.9. Прямой суммой отношений (с 1 , М 1) и (с 2 , М 2) называется отношение). Прямая сумма обозначается (с 1 , М 1) (с 2 , М 2).

Таким образом, если (с 1 , М 1) (с 2 , М 2)= (), то M=.

Теорема 2.4: Если, а отношения - эквивалентности, то прямая сумма отношений (с 1 , М 1) (с 2 , М 2)= (), также является эквивалентностью.

V. Типы отношений

Введем еще несколько важных типов отношений. Примеры будут приведены в третьей главе.

Определение 2.10. Отношение с на множестве М называется толерантностью, если оно рефлексивно и симметрично.

Определение 2.11. Отношение с на множестве М называется отношением строгого порядка если оно антирефлексивно и транзитивно.

Определение 2.12. Отношение строгого порядка с называется совершенным строгим порядком, если для всякой пары элементов x и y из М верно либо (х, у), либо (у, х)

Определение 2.13. Отношение с на множестве М называется отношением нестрогого порядка если оно может быть представлено в виде:

где строгий порядок на М, а Е -диагональное отношение.

Во многих вычислительных задачах берутся большие множества и разбиваются таким образом, чтобы все интересующие нас ситуации можно было исследовать на нескольких правильно выбранных примерах.

Определение 1: Пусть A ¹ Æ и {A i },i= совокупность подмножеств таких, что A= . Тогда совокупность этих подмножеств называется покрытием множества A.

Например, {A, B}- покрытие AÈB; {A, AÈB, B, C}-покрытие AÈBÈC.

Замечание: В общем случае покрытие может быть и бесконечным. однако с точки зрения изучения конкретных свойств такая ситуация не вызывает энтузиазма.

Определение 2: Разбиением непустого множества А называется такое его покрытие , что если i¹ j, то A i ÇA j =Æ.

Например, {A, A’} – разбиение U .

{AÇB, AÇB’, A’ÇB, A’ÇB’} – разбиение U ,

{A\B, AÇB, B\A} – разбиение AÈB.

Организовать разбиение непустого множества можно при помощи отношений, которые ведут себя подобно отношениям равенства на множестве чисел или множеств.

Определение 3: Бинарное отношение на множестве называется отношением эквивалентности , если оно рефлексивно, симметрично и транзитивно.

Примеры :

1. На множестве всех треугольников: {(x, y)| x и y имеют одинаковую площадь}

2. На множестве всех программ: {(a, b)| a, b вычисляют одну и ту же функцию на конкретной машине}

Определение 4: Пусть R – отношение эквивалентности на множестве А и xÎA. Классом эквивалентности порожденным элементом х называется множество {y| xR y}=[x] R .

Определение 5: Любой элемент класса эквивалентности называется представителем этого класса. Полной системой представителей называется множество представителей, по одному из каждого класса.

Пример 3 :

N – натуральные числа, s – фиксированный элемент. На Z определено отношение: r s = {(x, y)| x-y=ns, nÎZ }. Отношение сравнения по модулю s (запись: xºy(mod s)).

Нетрудно проверить, что отношение сравнения по модулю s, есть отношение эквивалентности на множестве Z.

Пусть, например, s=10. Тогда:

= {11,21,-9,10 976 631,.... }

= {66,226,-24,... }

На самом деле есть всего 10 классов эквивалентности по этому отношению, а числа 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 образуют полную систему представителей . Классы эквивалентности по этому отношению эквивалентности называют классами вычетов по модулю s.



Определение 6: Фактор-множеством множества А по отношению эквивалентности R называется множество всех классов эквивалентности по этому отношению и обозначается A/R.

Множество классов вычетов по модулю s обозначают Z s .

Имеет место

Теорема (о разбиении): Пусть R - отношение эквивалентности на непустом множестве А. Тогда фактор-множество A/R является разбиением множества А.

Доказательство:

"xÎA(xÎ[x] R). Надо доказать, что каждый элемент множества А принадлежит в точности одному классу. То есть, докажем, что если классы имеют хотя бы один общий элемент, то они совпадают. Пусть cÎ[a] и cÎ[b]. Пусть xÎ[a], но тогда x R a, a R c, c R b Þ x R b(транзитивность R). Значит, [a] Ì [b]. (где рефлексивность? а она есть!) Аналогично [b] Ì [a].

Что и требовалось доказать.

Имеет место и обратное утверждение. Пусть S- разбиение множества А и R s – бинарное отношение на A, такое что: R={(x,y)ïx и y принадлежат одному элементу разбиения }, тогда R , будем называть– отношением, определяемым разбиением S.

Теорема (обратная): Отношение R на А, определяемое разбиением S, является отношением эквивалентности на А, причем A/R s =S.(самостоятельно)

Упражнения:

1. Пусть А- конечное множество. Какие отношения эквивалентности дают наибольшее и наименьшее число классов эквивалентности.

2. Если {A 1 , A 2 , ..., A n }- разбиение А и А конечно, то .

Отношение порядка.

Из понятия равенства (например, чисел) возникает математическое понятие эквивалентности. А из понятия неравенства возникает другой тип отношений, которые называются отношениями порядка.

Определение 1: Частичным порядком на множестве А называется бинарное отношение, которое рефлексивно, антисимметрично и транзитивно.

Частичный порядок - это обобщение отношения £ на R. Можно ввести понятие строгого порядка , соответствующего отношению < на R. Отношение строгого порядка - только транзитивно(оно еще и антирефлексивно).

Если задан £, то можно определить <: a

Множество, на котором задано отношение порядка, будем обозначать

(X, £) (или (X, <), если порядок строгий).

Определение 2: Множество, на котором задано отношение порядка, называется частично упорядоченным.

Пример: A - множество. (P (A),Í ), легко проверить, что отношение Í является отношением порядка на P (A).

Определение 3: Отношение порядка R на А называется полным (линейным) порядком , если " x, yÎA (xR y Ú yR x). Множество (A, R) называется линейно упорядоченным.

Примеры :

1. отношение £ на R является отношением полного порядка. Таким образом (R, £) - линейно упорядочено.

2. а вот (P (A),Í ) не является линейно упорядоченным

3. x£y Û y x на множестве N не является полным порядком

Определение 4: пусть (A, £) – частично упорядоченное множество. Элемент аÎА называетсянаименьшим /наибольшим/ в А, если " xÎA (a£ x) /x £ a /. Элемент bÎА называется минимальным /максимальным/ если " xÎA (x£ a Þ x=a) /a £ x Þ a=x /.

Задача: Доказать, что для линейно упорядоченного множества понятия наибольшего (наименьшего) и максимального (минимального) элементов совпадают. Привести пример частично упорядоченного множества, где они не совпадают.

Композиция отношений

Пусть заданы множества A, B и C и отношения S между A и B (то есть SÌA´B) и R между B и C (RÌB´C). Определим новое отношение между A и C следующим образом:

Определение 1: Множество всех пар (x, y), таких, что существует zÎB такое, что (x, z)Î S и (z, y)Î R называется композицией отношений S и R . Обозначается: R o S . Таким образом, R o S Ì A ´ C .

R oS = {(x, y)| $zÎB((x,z)ÎSÙ(z,y)ÎR)} или x R o Sy Û $zÎB(xSzÙzRy).

Пример 1 : Пусть A={1, 2, 3}, B={1, 2, 3, 4, 5, 6}, C={3, 6, 9, 12}, s ={(1,2), (2,4), (3,6)}, r={(1,3), (2,6), (3,9), (4,12)}. Тогда r o s={(1,6), (2,12)}.

Проиллюстрируем ситуацию на картинке:

Пример 2 : Пусть s и r - отношения на N такие, что

S = {(x,x+1)ïxÎN } и r = {(x 2 ,x)ïxÎN }. Тогда D r = {x 2 ïxÎN }={1,4,9,16,25,...}, а D s = N.

D r o s ={xïxÎN Ù x+1=y 2 }={3,8,15,24,...}.

В случае, когда отношение задано на множестве, оно может быть скомбинировано с самим собой:

sos = s 2 = {(x,x+2)½xÎN } и ror = r 2 = {(x 4 ,x)½xÎN }.

Используя это обозначение, можно определить энную степень отношения:

, где nÎN , n>1.

Например, для отношений из примера 2 имеем:

,

Хотелось бы дополнить аналогию с умножением. Для этого введем следующее естественное определение:

Определение 2: Бинарные отношения называются равными , если они равны как подмножества, то есть R=S, если"x,y((x,y)ÎRÛ(x,y)ÎS).

Понятно, что отношения должны быть определены на одних и тех же множествах.

Теорема (свойства композиции отношений): Для любых бинарных отношений R, S, T имеют место равенства:

1. (RoS)oT = Ro(SoT)

2. (RoS) -1 = S -1 o R -1

Доказательство:

1) Для любых x и y имеем:

x(RoS)oTy º $z(xTzÙ(zRoSy)) º $z$t(xTzÙ(zStÙtRy)) º $z$t((xTzÙzSt)ÙtRy) º $t(($z(xTzÙzSt))ÙtRy) º $t((xSoTt)ÙtRy) º xRo(SoT)y.

2) x(RoS) -1 y º yRoSx º $z(ySzÙzRx) º $z(xR -1 zÙzS -1 y) º xS -1 oR -1 y.

Что и требовалось доказать.

Замечание: если R - отношение на множестве A, то ясно, что I A oR=RoI A =R. То есть I A ведет себя как единица при умножении чисел. Однако полной аналогии провести нельзя. Поскольку, например, коммутативность, в общем случае места не имеет, так как RoS может быть определено, а SoR нет. Также как и не всегда имеет смысл равенство R -1 oR=RoR -1 = I A .

Замыкание отношений

Понятие замыкания является фундаментальным математическим понятием и используется в большинстве разделов математики. Проиллюстрируем это понятие на общем примере: возьмем объект x 0 и процесс P, который, будучи примененный последовательно, порождает некоторое множество и, значит, определяет последовательность x 1 , x 2 , ..., x n , ... так, что x 1 ÎP(x 0), x 2 ÎP(x 1),..., x n ÎP(x n -1),...

Определение 1: множество, содержащее все элементы всех последовательностей, которые могут быть получены при помощи процесса P и начинающиеся с x 0 , называется замыканием процесса P относительно x 0 .

Ясно, что результат будет заключаться в нахождении Р n (x 0) при некотором n. Это n мы заранее не знаем, оно зависит от самого процесса. Более того, если мы возьмем элемент y из этого замыкания и будем применять к нему процесс р, то не получим ничего нового. То есть множество таким путем расширено быть не может - оно замкнуто!

Пример : Возьмем квадрат S, обозначенный ABCD и рассмотрим процесс r, заключающийся в повороте квадрата по часовой стрелке на 90°:

Замыканием процесса r будет множество, состоящее из четырех позиций:

Однако всякий процесс P можно определить при помощи некоторого бинарного отношения A={(x, y)| yÎP(x), где P - изучаемый процесс}. Для построения замыкания отношения A достаточно иметь отношения A, A 2 , ..., A n и рассматривать объединение всех элементов, которые получаются из x применением A, A 2 , ..., A n и т.д.

Пусть отношение A задано на некотором множестве. Тогда:

Определение 2: Транзитивным замыканием отношения A на данном множестве называется отношение A + :

Таким образом, из не транзитивного отношения A на некотором множестве можно построить транзитивное A + .

Примеры:

1. r - отношение на N : r={(x, y)| y=x+1}, тогда r + ={(x, y)| x

2. s на Q : s={(x, y)| x

3. t наQ : t={(x, y)| x×y=1}, тогда r + ={(x, x)| x¹0}

4. Пусть L - множество станций лондонского метро; L={a, b, c} последовательные станции. N={(x, y)| y следует за x}.Значит (a, b), (b, c) ÎN; кроме того (a, a), (b, b), (c, c), (a, c) Î N 2 . Значит, N + =L´L

Вообще говоря, транзитивное замыкание не является рефлексивным (пример 2).

Пусть A - отношение на X. Положим A 0 =I X .

Определение 3: Рефлексивным замыканием А* отношения A называют отношение . То есть .

Примеры:

1. r*={(x, y)| x£y}

Часто используют инфиксную форму записи: .

Если отношение определено на множестве, то возможно следующее определение:

Примерами множеств с введёнными на них бинарными отношениями являются графы и частично упорядоченные множества.

Для определены свойства:

    Рефлексивность (англ. reflexivity ): ;

Отношение R на множестве Х называется рефлексивным, если о каждом элементе множества Х можно сказать, что он находится в отношении R с самим собой: хRх. Если отношение рефлексивно, то в каждой вершине графа имеется петля. И обратно, граф, каждая вершина которого содержит петлю, представляет собой граф рефлексивного отношения.

Примерами рефлексивных отношений являются и отношение «кратно» на множестве натуральных чисел (каждое число кратно самому себе), и отношение подобия треугольников (каждый треугольник подобен самому себе), и отношение «равенства» (каждое число равно самому себе) и др.

    Антирефлексивность (англ. irreflexivity ): ;

Отношение R на множестве Х называется антирефлексивным , если для любого элемента из множества Х всегда ложно хRх:.

    Симметричность (англ. symmetry ): ;

Отношение R на множестве Х называется симметричным , если выполняется условие: из того, что элемент х находится в отношении с элементом y , следует, что и элемент y находится в отношении R с элементом х: xRyyRx .

Примерами симметричных отношений могут быть следующие: отношение «параллельности» отрезков, отношение «перпендикулярности» отрезков, отношение «равенства» отрезков, отношение подобия треугольников, отношение «равенства» дробей и др.

    Антисимметричность (англ. antisymmetry ): ;

Отношение R называют антисимметричным , если для любых элементов х и y из истинности xRy следует ложность yRx: : xRyyRx.

    Транзитивность (англ. transitivity ): ;

Отношение R на множестве Х называют транзитивным, если из того, что элемент х находится в отношении R с элементом y, а элемент y находится в отношении R с элементом z , следует, что элемент х находится в отношении R с элементом z : xRy и yRzxRz.

Свойством транзитивности обладает и отношение «длиннее» на множестве отрезков: если отрезок а длиннее отрезка b , отрезок b длиннее отрезка с , то отрезок а длиннее отрезка с. Отношение «равенства» на множестве отрезков также обладает свойством транзитивности: (а=b, b=с)(а=с).

    Связность (англ. connectivity ): ;

Отношение R на множестве Х называется связанным, если для любых элементов х и y из данного множества выполняется условие: если х и y различны, то либо х находится в отношении R с элементом y , либо элемент y находится в отношении R с элементом х . С помощью символов это определение можно записать так: xyxRy или yRx.

Например, свойством связанности обладает отношение «больше» для натуральных чисел: для любых различных чисел х и y можно утверждать, либо x>y, либо y>x.

    Ассимметричность (англ. assymetric relation ): .

Выделяются следующие виды отношений:

    квазипорядка (англ. quasiorder ) - рефлексивное транзитивное;

    эквивалентности (англ. equivalence ) - рефлексивное симметричное транзитивное;

Отношение R на множестве Х называется отношением эквивалентности, если оно одновременно обладает свойством рефлексивности, симметричности и транзитивности.

Примерами отношений эквивалентности могут служить: отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).

В рассмотренном выше отношении «равенства дробей», множество Х разбилось на три подмножества: {; ; }, {; }, {}. Эти подмножества не пересекаются, а их объединение совпадает с множеством Х , т.е. имеем разбиение множества на классы.

Итак, если на множестве Х задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества – классы эквивалентности.

    частичного порядка (англ. partial order ) - рефлексивное антисимметричное транзитивное;

Бинарное отношение на множественазывается отношением частичного порядка (англ. partial order relation

      Рефлексивность (англ. reflexivity ): .

      Антисимметричность (англ. antisymmetry ): еслии, то.

      Транзитивность (англ. transitivity ): еслии, то.

«больше или равно» и «меньше или равно» - нестрогого, причем линейного порядка, но не полного.

Отношение «является делителем» на множестве натуральных чисел является отношением частичного порядка.

    строгого порядка (англ. strict order ) - антирефлексивное антисимметричное транзитивное;

Бинарное отношение на множественазывается строгим отношением частичного порядка (англ. strict order relation ), если оно обладает следующими свойствами:

    Антирефлексивность (англ. irreflexivity ): - не выполняется.

    Антисимметричность (англ. antisymmetry ): еслии, то.

    Транзитивность : (англ. transitivity ) еслии, то.

На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка

    линейного порядка (англ. total order ) - полное антисимметричное транзитивное;

Если отношение порядка обладает еще и свойством связанности, то говорят, что оно является отношением линейного порядка. Например, отношение «меньше» на множестве натуральных чисел.

Бинарное отношение на множественазывается отношением линейного порядка (англ. total order relation ), если оно является отношением частичного порядка и обладает следующим свойством: либо, либо.

    доминирования (англ. dominance ) - антирефлексивное антисимметричное.

    толерантности

Отношением толерантности (или просто толерантностью) на множестве X называется бинарное отношение, удовлетворяющее свойствам рефлексивности и симметричности , но не обязательно являющееся транзитивным. Таким образом, отношение эквивалентности является частным случаем толерантности.

В отличие от отношения эквивалентности, дающего разбиение множества элементов, на котором оно определено, на непересекающиеся подмножества, отношение толерантности даёт покрытие этого множества. Отношение толерантности используется, например, также при классификациях информации в базах знаний.

На содержательном уровне толерантность означает следующее. Любой объект неразличим сам с собой (свойство рефлексивности), а сходство двух объектов не зависит от того, в каком порядке они сравниваются (свойство симметричности). Однако, если один объект сходен с другим, а этот другой - с третьим, то это вовсе не значит, что все три объекта схожи между собой (таким образом, свойство транзитивности может не выполняться).

Отношение толерантности часто используется для описания отношения сходства между реальными объектами, отношений знакомства или дружбы между людьми. Во всех этих случаях свойство транзитивности не предполагается обязательно быть выполненным. В самом деле, Иванов может быть знаком с Петровым, Петров - с Сидоровым, но при этом Иванов и Сидоров могут быть незнакомы между собой.

Толерантным также будет и отношение на множестве слов, при котором оно задаётся как наличие хотя бы одной общей буквы. В этом случае, например, в отношении находятся пересекающиеся слова кроссворда.

Примеры отношений

    Примеры рефлексивных отношений : равенство, одновременность, сходство.

    Примеры нерефлексивных отношений : «заботиться о», «развлекать», «нервировать».

    Примеры транзитивных отношений : «больше», «меньше», «равно», «подобно», «выше», «севернее».

    Примеры симметричных отношений : равенство (=), неравенство, отношение эквивалентности, подобия, одновременности, некоторые отношения родства (например, отношение братства).

    Примеры антисимметричных отношений : больше, меньше, больше или равно.

    Примеры асимметричных отношений : отношение «больше» (>) и «меньше» (<).

Бинарное отношение на множественазывается отношением эквивалентности (англ. equivalence binary relation ), если оно обладает следующими свойствами:

    Рефлексивность : .

    Симметричность : если, то.

    Транзитивность : еслии, то.

Отношение эквивалентности обозначают символом. Запись видачитают как "эквивалентно"

    Отношение равенства () является тривиальным примером отношения эквивалентности на любом множестве.

    Отношение равенства по модулю : на множестве целых чисел.

    Отношение параллельности прямых на плоскости.

    Отношение подобия фигур на плоскости.

    Отношение равносильности на множестве уравнений.

    Отношение связности вершин в графе.

    Отношение быть одного роста на множестве людей.

Система непустых подмножеств множестваназывается разбиением (англ. partition ) данного множества, если:

Множества называются классами данного разбиения.

Если на множестве M задано отношение эквивалентности, то оно порождает разбиение этого множества на классы эквивалентности такое, что:

    любые два элемента одного класса находятся в отношении

    любые два элемента разных классов не находятся в отношении

Семейство всех классов эквивалентности множества образует множество, называемое фактор-множеством , или факторизацией множества по отношению, и обозначаемое.

Равенство - классический пример отношения эквивалентности на любом множестве.

Рассмотрим на множестве дробей X = { } отношение равенства. Это отношение:

Рефлексивно, так как всякая дробь равна сама себе;

Симметрично, так как из того, что дробь равна дроби , следует, что дробь равна дроби ;

Транзитивно, так как из того, что дробь равна дроби и дробь равна дроби , следует, что дробь равна дроби .

Про отношение равенства дробей говорят, что оно является отношением эквивалентности.

Определение. Отношение R на множестве X называется отношением эквивалентности, если оно одновременно обладает свойствами рефлексивности, симметричности и транзитивности .

Примерами отношений эквивалентности могут служить отношения равенства геометрических фигур, отношение параллельности прямых (при условии, что совпадающие прямые считаются параллельными).

Почему в математике выделили этот вид отношений? Рассмотрим отношения равенства дробей, заданного на множестве X = { }. (Рис.7).

Видим, что множество разбилось на три подмножества: Эти подмножества не пересекаются, а их объединение совпадает с множеством X, т е имеем разбиение множества X на классы. Это не случайно.

Вообще если на множестве X задано отношение эквивалентности, то оно порождает разбиение этого множества на попарно непересекающиеся подмножества (классы эквивалентности).

Так, мы установили, что отношению равенства на множестве дробей

X = { } соответствует разбиение этого множества на классы эквивалентности, каждый из которых состоит из равных между собой дробей.

Верно и обратное утверждение: если какое-либо отношение, заданное на множестве X, порождает разбиение этого множества на классы, то оно является отношением эквивалентности.

Рассмотрим, например, на множестве X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} отношение «иметь один и тот же остаток при делении на 3». Оно порождает разбиение множества X на классы: в один попадут все числа, при делении которых на 3 получается в остатке 0 (это числа 3, 6, 9), во второй - числа, при делении которых на 3 в остатке получается 1 (это числа 1, 4, 7, 10), и в третий - все числа, при делении которых на 3 в остатке получается 2 (это числа 2, 5, 8). Действительно, полученные подмножества не пересекаются и их объединение совпадает с множеством X. Следовательно, отношение «иметь один и тот же остаток при делении на 3», заданное на множестве X, является отношением эквивалентности. Заметим, что утверждение о взаимосвязи отношения эквивалентности и разбиения множества на классы нуждается в доказательстве. Мы его опускаем. Скажем только, что если отношение эквивалентности имеет название, то соответствующее название дается и классам. Например, если на множестве отрезков задается отношение равенства (а оно является отношением эквивалентности), то множество отрезков разбивается на классы равных отрезков (см. рис. 4). Отношению подобия соответствует разбиение множества треугольников на классы подобных треугольников.

Итак, имея отношение эквивалентности на некотором множестве, мы можем разбить это множество на классы. Но можно поступить и наоборот: сначала разбить множество на классы, а затем определить отношение эквивалентности, считая, что два элемента эквивалентны тогда и только тогда, когда они принадлежат одному классу рассматриваемого разбиения.

Принцип разбиения множества на классы при помощи некоторого отношения эквивалентности является важным принципом математики. Почему?

Во-первых , эквивалентный - это значит равносильный, взаимозаменяемый. Поэтому элементы одного класса эквивалентности взаимозаменяемы. Так, дроби, оказавшиеся в одном классе эквивалентности неразличимы с

точки зрения отношения равенства, и дробь может быть заменена другой, например И эта замена не изменит результата вычислений.

Во-вторых , поскольку в классе эквивалентности оказываются элементы, неразличимые с точки зрения некоторого отношения, то считают, что класс эквивалентности определяется любым своим представителем, т.е. произвольным элементом этого класса. Так, любой класс равных дробей можно задать, указав любую дробь, принадлежащую этому классу. Определение класса эквивалентности по одному представителю позволяет вместо всех элементов множества изучать совокупность отдельных представителей из классов эквивалентности. Например, отношение эквивалентности «иметь одинаковое число вершин», заданное на множестве многоугольников, порождает разбиение этого множества на классы треугольников, четырехугольников, пятиугольников и т.д. Свойства, присущие некоторому классу, рассматриваются на одном его представителе.

В-третьих , разбиение множества на классы с помощью отношения эквивалентности используется для введения новых понятий. Например, понятие «пучок прямых» можно определить как то общее, что имеют параллельные между собой прямые.

Вообще любое понятие, которым оперирует человек, представляет собой некоторый класс эквивалентности. «Стол», «дом», «книга» - все эти понятия являются обобщенными представлениями о множестве конкретных предметов, имеющих одинаковое назначение.

Другим важным видом отношений являются отношения порядка. Оно определяется следующим образом.

Определение. Отношение R на множестве X называется отношением порядка, если оно одновременно обладает свойством антисимметричности и транзитивности.

Примерами отношений порядка могут служить: отношения «меньше» на множестве натуральных чисел; отношения

«короче» на множестве отрезков, поскольку они антисимметричны и транзитивны.

Если отношение порядка обладает еще свойством связанности, то говорят, что оно является отношением линейного порядка.

Например, отношение «меньше» на множестве натуральных чисел является отношением линейного порядка, так как обладает свойствами антисимметричности, транзитивности и связанности.

Определение. Множество X называется упорядоченным, если на нем задано отношение порядка.

Так, множество N натуральных чисел можно упорядочить, если задать на нем отношение «меньше».

Если отношение порядка, заданное на множестве X, обладает свойством связанности, то говорят, что оно линейно упорядочивает множество X.

Например, множество натуральных чисел можно упорядочить и с помощью отношения «меньше», и с помощью отношения «кратно» - оба они являются отношениями порядка. Но отношение «меньше», в отличие от отношения «кратно», обладает еще и свойством связанности. Значит, отношение «меньше» упорядочивает множество натуральных чисел линейно.

Не следует думать, что все отношения делятся на отношения эквивалентности и отношения порядка. Существует огромное число отношений, не являющихся ни отношениями эквивалентности, ни отношениями порядка.

Классы эквивалентных элементов и их свойства

Пусть %%R%% — отношение эквивалентности на множестве %%M%% и %%a%% — некоторый элемент из %%M%%. Рассмотрим множество всех элементов из %%M%%, находящихся в отношении %%R%% к элементу %%a%%.

Классом эквивалентности %%M_a%%

называется множество всех элементов %%M%%, находящихся в отношении %%R%% к элементу %%a%%, то есть множество

$$ M_a = \{x \in M: x~R~a\}. $$

Пример

Пусть %%M%% — множество всех жителей России и %%R%% — отношение эквивалентности «проживать в одном городе». Найти классы эквивалентных элементов %%M_a%% для %%a \in M%%.

Класс элементов, эквивалентных элементу %%a%%, имеет вид: $$ M_a = \{x \in M: x \text{ проживает в одном городе с человеком } a\} $$

В зависимости от элемента %%a%% получаем несколько классов эквивалентности. Например, класс эквивалентности жителей Москвы или Санкт-Петербурга.

Свойства классов эквивалентности

Пусть %%R%% — отношение эквивалентности на множестве %%M%% и %%M_a, M_b, \dotsc, M_z, \dotsc%% — все классы эквивалентности для отношения %%R%%. Тогда эти классы имеют следующие свойства.

Свойство 1

Для любого элемента %%a \in M%% выполняется условие $$ a \in M_a $$

Действительно, по определению, класс %%M_a = \{x \in M: x~R~a\}%%. Тогда для элемента %%a%% должно выполняться условие %%a \in M_a \leftrightarrow a~R~a%%, которое выполняется в связи с тем, что отношение %%R%% рефлексивно по определению отношения эквивалентности. Следовательно, %%a \in M_a%%.

Как следствие этого свойства можно сказать, что всякий класс %%M_a%% является непустым множеством.

Свойство 2

Пусть %%M_a%% и %%M_b%% классы эквивалентности для отношения %%R%%. Классы %%M_a%% и %%M_b%% равны тогда и только тогда, когда элемент %%a%% находится в отношении %%R%% к элементу %%b%%. $$ M_a = M_b \leftrightarrow a~R~b. $$

Свойство 3

Пусть %%M_a%% и %%M_b%% классы эквивалентности для отношения %%R%%. Тогда классы %%M_a%% и %%M_b%% не имеют общих элементов. $$ M_a \neq M_b \rightarrow M_a \cap M_b = \varnothing $$

Свойство 4

Объединение всех классов эквивалентности множества %%M%% равно множеству %%M%%. $$ \bigcup_{a\in M}{M_a} = M. $$

Разбиение множества

Совокупностью подмножеств %%M_i%%, где %%i \in I%% (множеству индексов), множества %%M%% называется разбиением множества %%M%% если выполняются следующие условия:

  1. Каждое из подмножеств %%M_i%% непусто.
  2. Объединение всех подмножеств %%M_i%% равно множеству %%M%%.
  3. Два различных подмножества %%M_i%% и %%M_j%%, где %%i \neq j%%, не имеют общих элементов.

Теорема. Пусть %%R%% — отношение эквивалентности на множестве %%M%%. Тогда совокупность классов эквивалентности множества %%M%% образует его разбиение.

Действительно, если в качестве подмножеств %%M_i%% взять классы эквивалентности %%M_a%%, то все три условия выполняются:

  1. Каждый класс эквивалентности является непустым множеством, согласно свойству 1 .
  2. Объединение всех классов эквивалентности есть множество %%M%%, согласно свойству 4 .
  3. Два различных класса эквивалентности не имеют общих элементов, согласно свойству 3 .

Все условия определения разбиения выполнены. Следовательно классы эквивалентности есть разбиение множества %%M%%.

Примеры

Пусть дано множество %%M = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0 \}%%, тогда разбиением этого множества могут быть следующие совокупности множеств:

  1. %%A_1 = \{1, 2, 3\}, A_2 = \{4, 5, 6, 7\}, A_3 = \{8, 9, 0 \}%%.
  2. %%B_1 = \{0, 7, 2\}, B_2 = \{1, 3, 5 \}, B_3 = \{4, 6, 8, 9\}%%.

Но следующие совокупности не являются разбиением:

  1. %%C_1 = \{1, 2, 3\}, C_2 = \{4, 5, 6, 7\}, C_3 = \{8, 9, 0, 3\}%%.
  2. %%D_1 = \{0, 7, 2\}, D_2 = \{1, 3, 5 \}, D_3 = \{4, 6, 8, 9\}, D_4 = \varnothing%%.
  3. %%E_1 = \{0, 1, 2\}, E_2 = \{3, 4, 5\}, E_3 = \{6, 7, 8\}%%.

Совокупность множеств %%C_i%% не является разбиением, т.к. оно не удовлетворяет условию 3 разбиения множеств: множества %%C_1%% и %%C_3%% имеют общий элемент %%3%%.

Совокупность множеств %%D_i%% не является разбиением, т.к. оно не удовлетворяет условию 1 разбиения множеств: множество %%D_4%% пусто.

Совокупность множеств %%E_i%% не является разбиением, т.к. оно не удовлетворяет условию 2 разбиения множеств: объединение множеств %%E_1, E_2%% и %%E_3%% не образует множество %%M%%.