Слово LASER (Light Amplifacation by the Stimulated Emission ) с английского переводится как Усиление Света путем Стимулирования Излучения . Само действие лазера было описано еще Энштейном в далеком 1917 году, но первый работающий лазер был построен лишь спустя 43 года Теодором Мейманом, который работал в компании Hugрes Aircraft. Для получения миллисекундных импульсов лазерного излучения он использовал кристалл искусственного рубина как активную среду. Длина волны того лазера была 694 нм. Через некоторое время был испробован уже лазер с длиной волны в 1060 нм, что является ближней ИК-областью спектра. В качестве активной среды в этом лазере выступали стеклянные стержни, легированные неодимом.

Но практического применения в то время лазер не имел. Ведущие специалисты-физики искали ему предназначение в различных сферах деятельности человека. Первые экспериментальные опыты с лазером в медицине были не совсем успешные. Лазерное излучение, на тех волнах довольно плохо поглощалось, точно контролировать мощность еще не было возможности. Однако в 60-х годах лазер на красном рубине хорошо себя показал в офтальмологии.

История применения лазеров в медицине

В 1964 году был разработан и опробован аргоновый ионный лазер. Это был лазер непрерывного излучения с сине-зеленой областью спектра и длиной волны в 488 нм. Это газовый лазер и контролировать мощность его было легче. Гемоглобин хорошо поглощал его излучение. Спустя короткое время стали появляться лазерные системы на основе аргонового лазера, которые помогали в лечении заболеваний сетчатки глаза.

В том же 64 году в лаборатории Bell был разработан лазер на алюмоитриевом гранате, легированным неодимом () и . СО2 — это газовый лазер, у которого излучение имеет непрерывный характер, с длиной волны 1060 нм. Вода очень хорошо поглощает его излучение. А так как мягкие ткани у человека в основном состоят из воды, то лазер СО2 стал хорошей альтернативой обычному скальпелю. При использовании этого лазера для разрезания тканей сводится к минимуму кровопотеря. В 70-х годах углекислотные лазеры нашли широкое применение в госпиталях при институтах в США. Сфера применения в то время для лазерных скальпелей: гинекология и отоларингология.

1969 год стал годом разработки первого импульсного лазера на красителях, а уже в 1975 году появился первый эксимерный лазер. Начиная с этого времени лазер стал активно использоваться и внедряться в различные сферы деятельности.

Широкое распространение лазеры в медицине начали получать в 80-х годах в больницах и клиниках США. В большинстве своем тогда использовались углекислотные и аргоновые лазеры и применялись они в хирургии и офтальмологии. В недостатки лазеров того времени можно записать то, что у них было постоянное непрерывное излучение, которое исключало возможность более точной работы, что приводило к тепловым поражениям тканей вокруг обрабатываемой зоны. Успешное применение лазерных технологий в то время требовало колоссального опыта работы.

Следующим шагом в разработке лазерных технологий для медицины стало изобретение импульсного лазера. Такой лазер позволял воздействовать исключительно на проблемную зону, без повреждения окружающих тканей. И в 80-х годах появились первые . Это стало началом применения лазеров в косметологии. Такие лазерные системы могли удалять капиллярные гемангиомы и родимые пятна. Чуть позже появились лазеры способные . Это были лазеры с модуляцией добротности (Q-switched lser).

Начало 90-х годов были разработаны и внедрены технологии сканирования. Точность лазерной обработки теперь контролировалась компьютером и появилась возможность проводить лазерную шлифовку кожи (), что значительно подняло популярность и .

Сегодня область применения лазеров в медицине очень широкая. Это хирургия, офтальмология, стоматология, нейрохирургия, косметология, урология, гинекология, кардиология и т.д. Вы можете себе представить, что когда то лазер лишь был неплохой альтернативой скальпелю, а сегодня с его помощью можно удалять раковые клетки, производить очень точные операции на различных органах, диагностировать серьезные заболевания на самых ранних стадиях, такие как рак. Сейчас лазерные технологии в медицине идут в сторону развития комбинированных методов лечения, когда на ряду с лазерной терапией применяют физиотерапию,медикаменты, УЗ. К примеру в лечении гнойных заболеваний был разработан комплекс мероприятий, который включает лазерную обработку, использование антиоксидантов и различных биологически активных материалов.

Лазерные технологии и медицина должны идти рука об руку в будущее. Даже уже сегодня новейшие разработки в лазерной медицине помогают в удалении раковых опухолей, применяются в коррекции тела в косметологии и зрения в офтальмологии. Малоинвазивная хирургия, когда с использованием лазера делаются очень сложные операции.

Дополнительная информация:

Свет использовался для лечения разнообразных болезней испокон веков. Древние греки и римляне часто «принимали солнце» в качестве лекарства. И список болезней, которые приписывалось лечить светом, был достаточно велик.

Настоящий рассвет фототерапии пришелся на 19 век - с изобретением электрических ламп появились новые возможности. В конце XIX столетия красным светом пытались лечить оспу и корь, помещая пациента в специальную камеру с красными излучателями. Также различные «цветовые ванны» (то есть свет различных цветов) успешно применялись для лечения психических заболеваний. Причём лидирующую позицию в области светолечения к началу двадцатого столетия занимала Российская Империя.

В начале шестидесятых годов появились первые лазерные медицинские устройства. Сегодня лазерные технологии применяются практически при любых заболеваниях.

1. Физические основы применения лазерной техники в медицине

1.1 Принцип действия лазера

Основой лазеров служит явление индуцированного излучения, существование которого было постулировано А. Эйнштейном в 1916 г. В квантовых системах, обладающих дискретными уровнями энергии, существуют три типа переходов между энергетическими состояниями: индуцированные переходы, спонтанные переходы и безызлучательные релаксационные переходы. Свойства индуцированного излучения определяют когерентность излучения и усиления в квантовой электронике. Спонтанное излучение обусловливает наличие шумов, служит затравочным толчком в процессе усиления и возбуждения колебаний и вместе с безызлучательными релаксационными переходами играет важную роль при получении и удержании термодинамически неравновесного излучающего состояния.

При индуцированных переходах квантовая система может переводиться из одного энергетического состояния в другое как с поглощением энергии электромагнитного поля (переход с нижнего энергетического уровня на верхний), так и с излучением электромагнитной энергии (переход с верхнего уровня на нижний).

Свет распространяется в виде электромагнитной волны, в то время как энергия при испускании излучения и поглощении сконцентрирована в световых квантах, при этом при взаимодействии электромагнитного излучения с веществом, как было показано Эйнштейном в 1917 г., наряду с поглощением и спонтанным излучением возникает вынужденное (индуцированное) излучение, которое образует основу для разработки лазеров.

Усиление электромагнитных волн за счет вынужденного излучения или инициирование самовозбуждающихся колебаний электромагнитного излучения в диапазоне сантиметровых волн и тем самым создание прибора, названного мазером (microwave amplification by stimulated emission of radiation), было реализовано в 1954 г. По предложению (1958 г.) распространить этот принцип усиления на значительно более короткие световые волны в 1960 г. был разработан первый лазер (light amplification by stimulated emission of radiation).

Лазер является источником света, с помощью которого может быть получено когерентное электромагнитное излучение, которое известно нам из радиотехники и техники сверхвысоких частот, а также в коротковолновой, в особенности инфракрасной и видимой, областях спектра.

1.2 Типы лазеров

Существующие типы лазеров можно классифицировать по нескольким признакам. Прежде всего по агрегатному состоянию активной среды: газовые, жидкостные, твердотельные. Каждый из этих больших классов разбивается на более мелкие: по характерным особенностям активной среды, типу накачки, способу создания инверсии и т.д. Например, из твердотельных довольно четко выделяется обширный класс полупроводниковых лазеров, в которых наиболее широко используется инжекционная накачка. Среди газовых выделяют атомарные, ионные и молекулярные лазеры. Особое место среди всех прочих лазеров занимает лазер на свободных электронах, в основе работы которого лежит классический эффект генерации света релятивистскими заряженными частицами в вакууме.

1.3 Характеристики лазерного излучения

Излучение лазера отличается от излучения обычных источников света следующими характеристиками:

Высокой спектральной плотностью энергии;

Монохроматичностью;

Высокой временной и пространственной когерентностью;

Высокой стабильностью интенсивности лазерного излучения в стационарном режиме;

Возможностью генерации очень коротких световых импульсов.

Эти особые свойства излучения лазера обеспечивают ему разнообразнейшие применения. Они определяются главным образом принципиально отличным от обычных источников света процессом генерации излучения за счет вынужденного излучения.

Основными характеристиками лазера являются: длина волны, мощность и режим работы, который бывает непрерывным либо импульсным.

Лазеры находят широкое применение в медицинской практике и прежде всего в хирургии, онкологии, офтальмологии, дерматологии, стоматологии и других областях. Механизм взаимодействия лазерного излучения с биологическим объектом ещё изучен не до конца, но можно отметить, что имеют место либо тепловые воздействия, либо резонансные взаимодействия с клетками тканей .

Лазерное лечение безопасно, оно очень актуально для людей с аллергией на медицинские препараты.

2. Механизм взаимодействия лазерного излучения с биотканями

2.1 Виды взаимодействия

Важное для хирургии свойство лазерного излучения - способность коагулировать кровенасыщенную (васкуляризованную) биоткань.

В основном, коагуляция происходит за счет поглощения кровью лазерного излучения, ее сильного нагрева до вскипания и образования тромбов. Таким образом, поглощающей мишенью при коагуляции могут быть гемоглобин или водная составляющая крови. Это означает, что хорошо коагулировать биоткань будет излучение лазеров в области оранжево-зеленого спектра (КТР-лазер, на парах меди) и инфракрасных лазеров (неодимовый, гольмиевый, эрбиевый в стекле, СО2-лазер).

Однако, при очень высоком поглощении в биоткани, как, например, у эрбиевого гранатового лазера с длиной волны 2,94 мкм, лазерное излучение поглощается на глубине 5 - 10 мкм и может вообще не достигнуть объекта воздействия - капилляра.

Хирургические лазеры делятся на две большие группы: абляционные (от лат. ablatio - «отнятие»; в медицине - хирургическое удаление, ампутация) и неабляционные лазеры. Абляционные лазеры ближе к скальпелю. Необляционные лазеры действуют по другому принципу: после обработки какого-то объекта, например, бородавки, папилломы или гемангиомы, таким лазером, этот объект остаётся на месте, но через какое-то время в нём проходит серия биологических эффектов и он отмирает. На практике это выглядит так: новообразование мумифицируется, засыхает и отпадает.

В хирургии применяются CO2-лазеры непрерывного действия. Принцип основан на тепловом воздействии. Преимущества лазерной хирургии состоят в том, что она является бесконтактной, практически бескровной, стерильной, локальной, даёт гладкое заживление рассечённой ткани, а отсюда хорошие косметические результаты.

В онкологии было замечено, что лазерный луч оказывает разрушающее действие на опухолевые клетки. Механизм разрушения основан на термическом эффекте, вследствие которого возникает разность температур между поверхностными и внутренними частями объекта, приводящая к сильным динамическим эффектам и разрушению опухолевых клеток.

Сегодня также очень перспективно такое направление, как фотодинамическая терапия. Появляется множество статей о клиническом применении данного метода. Суть его состоит в том, что в организм пациента вводят специальное вещество - фотосенсибилизатор . Это вещество избирательно накапливается раковой опухолью. После облучения опухоли специальным лазером происходит серия фотохимических реакций с выделением кислорода, который убивает раковые клетки.

Одним из способов воздействия лазерным излучением на организм является внутривенное лазерное облучение крови (ВЛОК), которое в настоящее время успешно используется в кардиологии, пульмонологии, эндокринологии, гастроэнтерологии, гинекологии, урологии, анестезиологии, дерматологии и других областях медицины. Глубокая научная проработка вопроса и прогнозируемость результатов способствуют применению ВЛОК как самостоятельно, так и в комплексе с другими методами лечения.

Для ВЛОК обычно используют лазерное излучение в красной области спектра
(0,63 мкм) мощностью 1,5-2 мВт. Лечение проводят ежедневно или через день; на курс от 3 до 10 сеансов. Время воздействия при большинстве заболеваний 15-20 мин за сеанс для взрослых и 5-7 мин для детей. Внутривенная лазерная терапия может быть осуществлена практически в любом стационаре или поликлинике. Преимуществом амбулаторной лазеротерапии является уменьшение возможности развития внутрибольничной инфекции, создается хороший психоэмоциональный фон, позволяя больному на протяжении длительного времени сохранять работоспособность, проводя при этом процедуры и получая полноценное лечение.

В офтальмологии лазеры применяют как для лечения, так и для диагностики. С помощью лазера производят приварку сетчатки глаза, сварку сосудов глазной сосудистой оболочки. Для микрохирургии по лечению глаукомы служат аргоновые лазеры, излучающие в сине-зелёной области спектра. Для коррекции зрения давно и успешно используются эксимерные лазеры.

В дерматологии с помощью лазерного излучения лечат многие тяжёлые и хронические заболевания кожи, а также выводят татуировки. При облучении лазером активируется регенеративный процесс, происходит активация обмена клеточных элементов .

Основной принцип применения лазеров в косметологии заключается в том, что свет воздействует только на тот объект или вещество, которое поглощает его. В коже свет поглощается особыми веществами - хромофорами. Каждый хромофор поглощает в определенном диапазоне длин волн, например, для оранжевого и зеленого спектра это гемоглобин крови, для красного спектра - меланин волос, а для инфракрасного спектра - клеточная вода.

При поглощении излучения происходит преобразование энергии лазерного луча в тепло на том участке кожи, который содержит хромофор. При достаточной мощности лазерного луча это приводит к тепловому разрушению мишени. Таким образом, с помощью лазера можно селективно воздействовать, например, на корни волос, пигментные пятна и другие дефекты кожи.

Однако вследствие переноса тепла происходит нагревание и соседних областей, даже если они содержат мало светопоглощающих хромофоров. Процессы поглощения и переноса тепла зависят от физических свойств мишени, глубины залегания и ее размера. Поэтому в лазерной косметологии важно тщательно подбирать не только длину волны, но и энергию, и длительность лазерных импульсов.

В стоматологии лазерное излучение является наиболее эффективным физиотерапевтическим средством лечения пародонтоза и заболеваний слизистой оболочки полости рта.

Лазерный луч применяется вместо иглоукалывания. Преимущества применения лазерного луча состоит в том, что отсутствует контакт с биологическим объектом, а, следовательно, процесс протекает стерильно и безболезненно при большой эффективности.

Световодные инструменты и катетеры для лазерной хирургии предназначены для доставки мощного лазерного излучения к месту проведения оперативного вмешательства при открытых, эндоскопических и лапароскопических операциях в урологии, гинекологии, гастроэнтерологии, общей хирургии, артроскопии, дерматологии. Позволяют осуществлять резание, иссечение, абляцию, вапоризацию и коагуляцию тканей при проведении хирургических операций в контакте с биотканью или в бесконтактном режиме применения (при удалении торца волокна от биоткани). Вывод излучения может осуществляться как с торца волокна, так и через окошко на боковой поверхности волокна. Могут использоваться как в воздушной (газовой), так и водной (жидкой) среде. По отдельному заказу для удобства пользования катетеры комплектуются легкосъёмной ручкой - держателем световода.

В диагностике лазеры применяются для обнаружения различных неоднородностей (опухолей, гематом) и измерения параметров живого организма. Основы диагностических операций сводятся к пропусканию через тело пациента (либо один из его органов) лазерного луча и по спектру или амплитуде прошедшего или отражённого излучения выводят диагноз. Известны методы по обнаружению раковых опухолей в онкологии, гематом в травматологии, а также по измерению параметров крови (практически любых, от артериального давления до содержания сахара и кислорода).

2.2 Особенности лазерного взаимодействия при различных параметрах излучения

Для целей хирургии луч лазера должен быть достаточно мощным, чтобы нагревать биоткань выше 50 - 70 °С, что приводит к ее коагуляции, резанию или испарению. Поэтому в лазерной хирургии, говоря о мощности лазерного излучения того или иного аппарата, оперируют цифрами, обозначающими единицы, десятки и сотни Вт.

Хирургические лазеры бывают как непрерывные, так и импульсные, в зависимости от типа активной среды. Условно их можно разделить на три группы по уровню мощности.

1. Коагулирующие: 1 - 5 Вт.

2. Испаряющие и неглубоко режущие: 5 - 20 Вт.

3. Глубоко режущие: 20 - 100 Вт.

Каждый тип лазера в первую очередь характеризуется длиной волны излучения. Длина волны определяет степень поглощения лазерного излучения биотканью, а, значит, и глубину проникновения, и степень нагрева как области хирургического вмешательства, так и окружающей ткани.

Учитывая, что вода содержится практически во всех типах биоткани, можно сказать, что для хирургии предпочтительно использовать такой тип лазера, излучение которого имеет коэффициент поглощения в воде более 10 см-1 или, что то же самое, глубина проникновения которого не превышает 1 мм.

Другие важные характеристики хирургических лазеров,
определяющие их применение в медицине:

мощность излучения;

непрерывный или импульсный режим работы;

способность коагулировать кровенасыщенную биоткань;

возможность передачи излучения по оптическому волокну.

При воздействии лазерного излучения на биоткань сначала происходит ее нагрев, а затем уже испарение. Для эффективного разрезания биоткани нужно быстрое испарение в месте разреза с одной стороны, и минимальный сопутствующий нагрев окружающих тканей с другой стороны.

При одинаковой средней мощности излучения короткий импульс нагревает ткань быстрее, чем непрерывное излучение, и при этом распространение тепла к окружающим тканям минимально. Но, если импульсы имеют низкую частоту повторения (менее 5 Гц), то непрерывный разрез провести сложно, это больше похоже на перфорацию. Следовательно, лазер предпочтительно должен иметь импульсный режим работы с частотой повторения импульсов более 10 Гц, а длительность импульса - минимально возможную для получения высокой пиковой мощности.

На практике оптимальная выходная мощность для хирургии находится в диапазоне от 15 до 60 Вт в зависимости от длины волны лазерного излучения и области применения.

3. Перспективные лазерные методы в медицине и биологии

Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика. Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами.

Растет интерес к немедикаментозным методам лечения, включая физиотерапию. Нередко возникают ситуации, когда необходимо проводить не одну физиопроцедуру, а несколько, и тогда пациенту приходиться переходить из одной кабины в другую, несколько раз одеваться и раздеваться, что создает дополнительные проблемы и потерю времени.

Многообразие методик терапевтического воздействия требует применения лазеров с различными параметрами излучения. Для этих целей служат различные излучающие головки, которые содержат один или несколько лазеров и электронное устройство сопряжения сигналов управления от базового блока с лазером.

Излучающие головки подразделяются на универсальные, позволяющие использовать их как наружно, (с использованием зеркальных и магнитных насадок), так и внутриполостно с использованием специальных оптических насадок; матричные, имеющие большую площадь излучения и применяющиеся поверхностно, а также специализированные. Различные оптические насадки позволяют доставлять излучение к требуемой зоне воздействия.

Блочный принцип позволяет применять широкий спектр лазерных и светодиодных головок, обладающих различными спектральными, пространственно-временными и энергетическими характеристиками, что, в свою очередь, поднимает на качественно новый уровень эффективность лечения за счет сочетанной реализации различных методик лазерной терапии. Эффективность лечения определяется прежде всего эффективными методиками и аппаратурой, которая обеспечивает их реализацию. Современные методики требуют возможность выбора различных параметров воздействия (режим излучения, длина волны, мощность) в широком диапазоне. Аппарат лазерной терапии (АЛТ) должен обеспечивать эти параметры, их достоверный контроль и отображение и вместе с тем быть простым и удобным в управлении.

4. Лазеры, применяемые в медицинской технике

4.1 CO2-лазеры

CO2-лазер , т.е. лазер, излучающей составляющей активной среды которого является углекислый газ CO2, занимает особое место среди всего многообразия существующих лазеров. Этот уникальный лазер отличается прежде всего тем, что для него характерны и большой энергосъем, и высокий КПД. В непрерывном режиме получены огромные мощности - в несколько десятков киловатт, импульсная мощность достигла уровня в несколько гигаватт, энергия импульса измеряется в килоджоулях. КПД CO2-лазера (порядка 30%) превосходит КПД всех лазеров. Частота следования в импульсно-периодическом режиме может составить несколько килогерц. Длины волн излучения CO2-лазера находятся в диапазоне 9-10 мкм (ИК-диапазон) и попадают в окно прозрачности атмосферы. Поэтому излучение CO2-лазера удобно для интенсивного воздействия на вещество. Кроме того, в диапазон длин излучения CO2-лазера попадают резонансные частоты поглощения многих молекул.

На рисунке 1 показаны нижние колебательные уровни основного электронного состояния вместе с условным представлением формы колебаний молекулы CO2.

Рисунок 20 - Нижние уровни молекулы CO2

Цикл лазерной накачки CO2-лазера в стационарных условиях выглядит следующим образом. Электроны плазмы тлеющего разряда возбуждают молекулы азота, которые передают энергию возбуждения несимметричному валентному колебанию молекул CO2, обладающему большим временем жизни и являющемуся верхним лазерным уровнем. Нижним лазерным уровнем обычно является первый возбужденный уровень симметричного валентного колебания, сильно связанный резонансом Ферми с деформационным колебанием и поэтому быстро релаксирующий вместе с этим колебанием в столкновениях с гелием. Очевидно, что тот же канал релаксации эффективен в том случае, когда нижним лазерным уровнем является второй возбужденный уровень деформационной моды. Таким образом, CO2-лазер - это лазер на смеси углекислого газа, азота и гелия, где CO2 обеспечивает излучение, N2 - накачку верхнего уровня, а He - опустошение нижнего уровня.

CO2-лазеры средней мощности (десятки - сотни ватт) конструируются отдельно в виде относительно длинных труб с продольным разрядом и продольной прокачкой газа. Типичная конструкция такого лазера показана на рисунке 2. Здесь 1 - разрядная трубка, 2 - кольцевые электроды, 3 - медленное обновление среды, 4 - разрядная плазма, 5 - внешняя трубка, 6 - охлаждающая проточная вода, 7,8 - резонатор.

Рисунок 20 - Схема CO2-лазера с диффузионным охлаждением

Продольная прокачка служит для удаления продуктов диссоциации газовой смеси в разряде. Охлаждение рабочего газа в таких системах происходит за счет диффузии на охлаждаемую снаружи стенку разрядной трубки. Существенной является теплопроводность материала стенки. С этой точки зрения целесообразно применение труб из корундовой (Al2O3) или бериллиевой (BeO) керамик.

Электроды делают кольцевыми, не загораживающими путь к излучению. Джоулево тепло выносится теплопроводностью к стенкам трубки, т.е. используется диффузионное охлаждение. Глухое зеркало делают металлическим, полупрозрачное - из NaCl, KCl, ZnSe, AsGa.

Альтернативой диффузионному служит конвекционное охлаждение. Рабочий газ с большой скоростью продувают через область разряда, и джоулево тепло выносится разрядом. Применение быстрой прокачки позволяет поднять плотности энерговыделения и энергосъема.

CO2-лазер в медицине применяется почти исключительно как «оптический скальпель» для резания и испарения во всех хирургических операциях. Режущее действие сфокусированного лазерного пучка основано на взрывном испарении внутри- и внеклеточной воды в области фокусировки, благодаря чему разрушается структура материала. Разрушение ткани приводит к характерной форме краев раны. В узко ограниченной области взаимодействия температура 100 °С превышается лишь тогда, когда достигнуто обезвоживание (испарительное охлаждение). Дальнейшее повышение температуры приводит к удалению материала путем обугливания или испарения ткани. Непосредственно в краевых зонах образуется из-за плохой в общем случае теплопроводности тонкое некротическое утолщение толщиной 30-40 мкм. На расстоянии 300-600 мкм уже не образуется повреждение ткани. В зоне коагуляции кровеносные сосуды диаметром до 0,5-1 мм спонтанно закрываются.

Хирургические устройства на основе CO2-лазера в настоящее время предлагаются в достаточно широком ассортименте. Наведение лазерного луча в большинстве случаев осуществляется с помощью системы шарнирно установленных зеркал (манипулятора), оканчивающейся инструментом со встроенной фокусирующей оптикой, которым хирург манипулирует в оперируемой области.

4.2 Гелий-неоновые лазеры

В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона. Возбуждение осуществляется электрическим разрядом. В чистом неоне создать инверсию в непрерывном режиме трудно. Эта трудность, носящая достаточно общий для многих случаев характер, обходится введением в разряд дополнительного газа - гелия, выполняющего функцию донора энергии возбуждения. Энергии двух первых возбужденных метастабильных уровней гелия (рисунок 3) довольно точно совпадают с энергиями уровней 3s и 2s неона. Поэтому хорошо реализуются условия резонансной передачи возбуждения по схеме

Рисунок 20 - Схема уровней He-Ne лазера

При правильно выбранных давлениях неона и гелия, удовлетворяющих условию

можно добиться заселения одного или обоих уровней 3s и 2s неона, значительно превышающего таковое в случае чистого неона, и получить инверсию населенностей.

Опустошение нижних лазерных уровней происходит в столкновительных процессах, в том числе и в соударениях со стенками газоразрядной трубки.

Возбуждение атомов гелия (и неона) происходит в слаботочном тлеющем разряде (рисунок 4). В лазерах непрерывного действия на нейтральных атомах или молекулах для создания активной среды чаще всего используется слабоионизированная плазма положительного столба тлеющего разряда. Плотность тока тлеющего разряда составляет 100-200 мА/см2. Напряженность продольного электрического поля такова, что число возникающих на единичном отрезке разрядного промежутка электронов и ионов компенсирует потери заряженных частиц при их диффузии к стенкам газоразрядной трубки. Тогда положительных столб разряда стационарен и однороден. Электронная температура определяется произведением давления газа на внутренний диаметр трубки . При малых электронная температура велика, при больших - низка. Постоянство величины определяет условия подобия разрядов. При постоянной плотности числа электронов условия и параметры разрядов будут неизменны, если неизменно произведение . Плотность числа электронов в слабоионизированной плазме положительного столба пропорциональна плотности тока.

Для гелий-неонового лазера оптимальные значения , равно как и парциальный состав газовой смеси, несколько отличны для различных спектральных областей генерации.

В области 0,63 мкм самой интенсивной из линий серии - линии (0,63282 мкм) соответствует оптимальное Тор·мм.

Рисунок 20 - Конструктивная диаграмма He-Ne лазера

Характерными значениями мощности излучения гелий-неоновых лазеров следует считать десятки милливатт в областях 0,63 и 1,15 мкм и сотни в области 3,39 мкм. Срок службы лазеров ограничивается процессами в разряде и исчисляется годами. С течением времени в разряде происходит нарушение состава газа. Из-за сорбции атомов в стенках и электродах происходит процесс «жестчения», падает давление, меняется отношение парциальных давлений He и Ne.

Наибольшая кратковременная стабильность, простота и надежность конструкции гелий-неонового лазера достигаются при установке зеркал резонатора внутрь разрядной трубки. Однако при таком расположении зеркала сравнительно быстро выходят из строя за счет бомбардировки заряженными частицами плазмы разряда. Поэтому наибольшее распространение получила конструкция, в которой газоразрядная трубка помещается внутрь резонатора (рисунок 5), а ее торцы снабжаются окнами, расположенными под углом Брюстера к оптической оси, обеспечивая тем самым линейную поляризацию излучения. Такое расположение имеет целый ряд преимуществ - упрощается юстировка зеркал резонатора, увеличивается срок службы газоразрядной трубки и зеркал, облегчается их смена, появляется возможность управления резонатором и применения дисперсионного резонатора, выделения мод и т.п.

Рисунок 20 - Резонатор He-Ne лазера

Переключение между полосами генерации (рисунок 6) в перестраиваемом гелий-неоновом лазере обычно обеспечивается за счет введения призмы, а для тонкой перестройкой линии генерации обычно используется дифракционная решетка.

Рисунок 20 - Использование призмы Литроу

4.3 ИАГ-лазеры

Трехвалентный ион неодима легко активирует многие матрицы. Из них самыми перспективными оказались кристаллы иттрий-алюминиевого граната Y3Al5O12 (ИАГ) и стекла. Накачка переводит ионы Nd3+ из основного состояния 4I9/2 в несколько относительно узких полос, играющих роль верхнего уровня. Эти полосы образованы рядом перекрывающихся возбужденных состояний, их положения и ширины несколько меняются от матрицы к матрице. Из полос накачки быстрая передача энергии возбуждения на метастабильный уровень 4F3/2 (рисунок 7).

Рисунок 20 - Энергетические уровни трехвалентных редкоземельных ионов

Чем ближе к уровню 4F3/2 расположены полосы поглощения, тем выше КПД генерации. Достоинством кристаллов ИАГ является наличие интенсивной красной линии поглощения.

Технология роста кристаллов основана на методе Чохральского, когда ИАГ и присадка плавятся в иридиевом тигле при температуре около 2000 °С с последующим выделением части расплава из тигля с помощью затравки. Температура затравки несколько ниже температуры расплава, и при вытягивании расплав постепенно кристаллизуется на поверхности затравки. Кристаллографическая ориентировка закристаллизовавшегося расплава воспроизводит ориентировку затравки. Выращивание кристалла осуществляется в инертной среде (аргон или азот) при нормальном давлении с малой добавкой кислорода (1-2%). Как только кристалл достигает нужной длины его медленно остужают для предотвращения разрушения из-за термических напряжений. Процесс роста занимает от 4 до 6 недель и проходит под компьютерным управлением.

Неодимовые лазеры работают в широком диапазоне режимов генерации, от непрерывного до существенно импульсного с длительностью, достигающей фемтосекунд. Последняя достигается методом синхронизации мод в широкой линии усиления, характерной для лазерных стекол.

При создании неодимовых, как, впрочем, и рубиновых, лазеров реализованы все характерные методы управления параметрами лазерного излучения, разработанные квантовой электроникой. В дополнение к так называемой свободной генерации, продолжающейся в течение практически всего времени существования импульса накачки, широкое распространение получили режимы включаемой (модулированной) добротности и синхронизации (самосинхронизации) мод.

В режиме свободной генерации длительность импульсов излучения составляет 0,1…10 мс, энергия излучения в схемах усиления мощности составляет около 10 пс при использовании для модуляции добротности электрооптических устройств. Дальнейшее укорочение импульсов генерации достигается применением просветляющихся фильтров как для модуляции добротности (0,1…10 пс), так и для синхронизации мод (1…10 пс).

При воздействии интенсивного излучения Nd-ИАГ-лазера на биологическую ткань образуются достаточно глубокие некрозы (коагуляционный очаг). Эффект удаления ткани и тем самым режущее действие, незначительны по сравнению с действием CO2-лазера. Поэтому Nd-ИАГ-лазер применяется преимущественно для коагуляции кровотечения и для некротизирования патологически измененных областей ткани почти во всех областях хирургии. Поскольку к тому же передача излучения возможна через гибкие оптические кабели, то открываются перспективы применения Nd-ИАГ-лазера в полостях тела.

4.4 Полупроводниковые лазеры

Полупроводниковые лазеры испускают в УФ-, видимом или ИК-диапазонах (0,32…32 мкм) когерентное излучение; в качестве активной среды применяются полупроводниковые кристаллы.

В настоящее время известно свыше 40 пригодных для лазеров различных полупроводниковых материалов. Накачка активной среды может осуществляться электронными пучками или оптическим излучением (0,32…16 мкм), в p-n-переходе полупроводникового материала электрическим током от приложенного внешнего напряжения (инжекция носителей заряда, 0,57…32 мкм).

Инжекционные лазеры отличаются от всех других типов лазеров следующими характеристиками:

Высоким КПД по мощности (выше 10%);

Простотой возбуждения (непосредственное преобразование электрической энергии в когерентное излучение - как в непрерывном, так и в импульсном режимах работы);

Возможностью прямой модуляции электрическим током до 1010 Гц;

Крайне незначительными размерами (длина менее 0,5 мм; ширина не более 0,4 мм; высота не более 0,1 мм);

Низким напряжением накачки;

Механической надежностью;

Большим сроком службы (до 107 ч).

4.5 Эксимерные лазеры

Эксимерные лазеры , представляющие собой новый класс лазерных систем, открывают для квантовой электроники УФ диапазон. Принцип действия эксимерных лазеров удобно пояснить на примере лазера на ксеноне ( нм). Основное состояние молекулы Xe2 неустойчиво. Невозбужденный газ состоит в основном из атомов. Заселение верхнего лазерного состояния, т.е. создание возбужденной устойчивости молекулы происходит под действием пучка быстрых электронов в сложной последовательности столкновительных процессов. Среди этих процессов существенную роль играют ионизация и возбуждение ксенона электронами.

Большой интерес представляют эксимеры галоидов инертных газов (моногалогенидов благородных газов), главным образом потому, что в отличие от случая димеров благородных газов соответствующие лазеры работают не только при электронно-пучковом, но и при газоразрядном возбуждении. Механизм образования верхних термов лазерных переходов в этих эксимерах во многом неясен. Качественные соображения свидетельствуют о большей легкости их образования по сравнению со случаем димеров благородных газов. Существует глубокая аналогия между возбужденными молекулами, составленными из атомов щелочного материала и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла, следующий за ним в таблице Менделеева. Этот атом легко ионизуется, так как энергия связи возбужденного электрона мала. В силу высокого сродства к электрону галогена этот электрон легко отрывается и при столкновении соответствующих атомов охотно перепрыгивает на новую орбиту, объединяющую атомы, осуществляя тем самым так называемую гарпунную реакцию.

Наиболее распространены следующие типы эксимерных лазеров: Ar2 (126,5 нм), Kr2 (145,4 нм), Xe2 (172,5 нм), ArF (192 нм), KrCl (222,0 нм), KrF (249,0 нм), XeCl (308,0 нм), XeF (352,0 нм).

4.6 Лазеры на красителях

Отличительной особенностью лазеров на красителях является возможность работы в широком длин волн от ближнего ИК до ближнего УФ, плавная перестройка длины волны генерации в диапазоне шириной в несколько десятков нанометров с монохроматичностью, достигающей 1-1,5 МГц. Лазеры на красителях работают в непрерывном, импульсном и импульсно-периодическом режимах. Энергия импульсов излучения достигает сотен джоулей, мощность непрерывной генерации - десятков ватт, частота повторения сотен герц, КПД десятков процентов (при лазерной накачке). В импульсном режиме длительность генерации определяется длительностью импульсов накачки. В режиме синхронизации мод достигается пикосекундный и субпикосекундный диапазоны длительностей.

Свойства лазеров на красителях определяются свойствами их рабочего вещества органических красителей. Красителями принято называть сложные органические соединения с разветвленной системой сложных химических связей, обладающие интенсивными полосами поглощения в видимой и ближней УФ областях спектра. Окрашенные органические соединения содержат насыщенные хромофорные группы типа NO2, N=N, =CO, ответственные за окраску. Наличие так называемых ауксохромных групп типа NH3, OH придает соединению красящие свойства.

4.7 Аргоновые лазеры

Аргоновый лазер относится к типу газоразрядных лазеров, генерирующих на переходах между уровнями ионов главным образом в сине-зеленой части видимой и ближней ультрафиолетовой областях спектра.

Обычно этот лазер излучает на длинах волн 0,488 мкм и 0,515 мкм, а также в ультрафиолете на длинах волн 0,3511 мкм и 0,3638 мкм.

Мощность может достигнуть 150 Вт (промышленные образцы 2 ч 10 Вт, срок службы в пределах 100 часов). Схема конструкции аргонового лазера с возбуждением от постоянного тока показан на рисунке 8.

Рисунок 20 - Схема конструкции аргонового лазера

1 - выходные окна лазера; 2 - катод; 3 - канал водяного охлаждения; 4 - газоразрядная трубка (капилляр); 5 - магниты; 6 - анод; 7 - обводная газовая трубка; 8 - глухое зеркало; 9 - полупрозрачное зеркало

Газовый разряд создается в тонкой газоразрядной трубке (4), диаметром 5 мм - в капилляре, которая охлаждается жидкостью. Рабочее давление газа в пределах десятки Па. Магниты (5) создают магнитное поле для «отжимания» разряда от стенок газоразрядной трубки, что не позволяет разряду касаться ее стенок. Эта мера позволяет повышать выходную мощность лазерного излучения за счёт снижения скорости релаксации возбужденных ионов, происходящую в результате соударения со стенками трубки.

Обводной канал (7) предназначен для выравнивания давления по длине газоразрядной трубки (4) и обеспечения свободной циркуляции газа. При отсутствии такого канала газ скапливается в анодной части трубки после включения дугового разряда, что может привести к его гашению. Механизм сказанного следующий. Под действием электрического поля, приложенного между катодом (2) и анодом (6) , электроны устремляются к аноду 6, повышая давление газа у анода. Это требует выравнивания давления газа в газоразрядной трубке для обеспечения нормального течения процесса, что осуществляется посредством обводной трубки (7).

Для ионизации нейтральных атомов аргона требуется через газ пропускать ток плотностью до нескольких тысяч ампер на квадратный сантиметр. Поэтому нужно эффективное охлаждение газоразрядной трубки.

Основные области применения аргоновых лазеров: фотохимия, термообработка, медицина. Аргоновый лазер, благодаря своей высокой избирательности по отношению автогенным хромофорам, применяется в офтальмологии и дерматологии.

5. Серийно выпускаемая лазерная аппаратура

Терапевты используют гелий-неоновые лазеры небольшой мощности, излучающие в видимой области электромагнитного спектра (λ=0,63 мкм). Одной из физиотерапевтических установок является лазерная установкаУФЛ-1 , предназначенная для лечения острых и хронических заболеваний челюстно-лицевой области; может использоваться для лечения длительно не заживающих язв и ран, а также в травматологии, гинекологии, хирургии (послеоперационный период). Используется биологическая активность красного луча гелий-неонового лазера (мощность излучения
20 мВт, интенсивность излучения на поверхности объекта 50-150 мВт/см2).

Есть сведения о том, что указанными лазерами лечат заболевания вен (трофические язвы). Курс лечения состоит из 20-25 десятиминутных сеансов облучения трофической язвы маломощным гелий-неоновым лазером и заканчивается, как правило, полным ее заживлением. Подобный эффект наблюдается и при лечении лазером не заживающих травматических и послеожоговых ран. Отдаленные последствия лазерной терапии при трофических язвах и долго не заживающих ранах проверялись на большом количестве излеченных больных в сроки от двух до семи лет. В течение этих сроков у 97% бывших больных язвы и раны больше не открывались и только у 3% наблюдались рецидивы заболевания.

Светоукалыванием лечат различные заболевания нервной и сосудистой системы, снимают боли при радикулите, регулируют кровяное давление и т.п. Лазер осваивает все новые и новые медицинские профессии. Лазер лечит мозг. Этому способствует активность видимого спектра излучения низкоинтенсивных гелий-неоновых лазеров. Лазерный луч, как оказалось, способен обезболивать, успокаивать и расслаблять мышцы, ускорять регенерацию тканей. Множество лекарств, обладающих аналогичными свойствами, назначают обычно больным, перенесшим черепно-мозговую травму, которая дает чрезвычайно запутанную симптоматику. Луч лазера сочетает в себе действие всех необходимых препаратов. В этом убедились специалисты из ЦНИИ рефлексотерапии Минздрава СССР и НИИ нейрохирургии им. К Н. Бурденко АМН СССР .

Исследования возможностей лечения лазерным лучом доброкачественных и злокачественных опухолей ведутся «Московским НИ онкологическим институтом им. П.А. Герцена», Ленинградским институтом онкологии им. Н.Н. Петрова и другими онкологическими центрами.

При этом используются лазеры разных типов: С02 лазер в непрерывном режиме излучения (λ = 10,6 мкм, мощность 100 Вт), гелий-неоновый лазер с непрерывном режимом излучения (λ = 0,63 мкм, мощность 30 мВт), гелий-кадмиевый лазер работающий в режиме непрерывного излучения (λ = 0,44 мкм, мощность 40 мВт), импульсный лазер на азоте (λ = 0,34 мкм, мощность импульса 1,5 кВт, средняя мощность излучения 10 мВт).

Разработаны и применяются три метода воздействия лазерного излучения на опухоли (доброкачественные и злокачественные):

а) Лазерное облучение- облучение опухоли расфокусированным лазерным лучом, приводящее к гибели раковых клеток, к потере способности размножаться.

б) Лазерокоагуляция - разрушение опухоли умеренно сфокусированным лучом.

в) Лазерная хирургия - иссечение опухоли вместе с прилегающими тканями сфокусированным лазерным лучом. Разработаны лазерные установки:

«Яхрома» - мощность до 2,5 Вт на выходе световода при длине волны 6З0 нм, время экспозиции от 50 до 750 сек; импульсный с частотой повторения 104 имп./сек.; на 2-х лазерах - импульсный лазер на красителях и лазер на парах меди «ЛГИ-202» . «Спектромед» - мощность 4 Вт при непрерывном режиме генерации, длина волны 620-690 нм, время экспозиции от 1 до 9999 сек при помощи устройства «Экспо» ; на двух лазерах - непрерывный лазер на красителях «Аметист» и аргоновый лазер «Инверсия» для фотодинамической терапии злокачественных опухолей (современный метод выборочного воздействия на раковые клетки организма).

Метод основан на различии в поглощении излучения лазера клетками, отличающимися по своим параметрам. Врач вспрыскивает фотосенсибилизирующие (приобретение организмом специфической повышенной чувствительности к чужеродным веществам) лекарство в область скопления патологических клеток. Лазерное излучение, попадающее на ткани организма, селективно поглощается раковыми клетками, содержащими лекарство, разрушая их, что позволяет проводить уничтожение раковых клеток без нанесения вреда окружающей ткани.

Аппарат лазерный АТКУС-10 (ЗАО «Полупроводниковые приборы»), изображенный на рисунке 9, позволяет производить воздействие на новообразования лазерным излучением с двумя различными длинами волн 661 и 810 нм. Аппарат предназначен для использования в медицинских учреждениях широкого профиля, а также для решения различных научно-технических задач в качестве источника мощного лазерного излучения. При использовании аппарата отсутствуют выраженные деструктивные поражения кожи и мягких тканей. Удаление опухолей хирургическим лазером уменьшает число рецидивов и осложнений, сокращает сроки заживления ран, позволяет обеспечить одноэтапность процедуры и дает хороший косметический эффект.

Рисунок 20 - Лазерный аппарат АТКУС-10

В качестве излучателя используются полупроводниковые лазерные диоды. Используется транспортное оптическое волокно диаметром 600 мкм.

ООО НПФ «Техкон» разработал аппарат лазерной терапии «Альфа 1М» (рисунок 10). Как сообщается на сайте производителя, установка эффективна при лечении артрозов, нейродермитов, экземы, стоматитов, трофических язв, послеоперационных ран и пр. Сочетание двух излучателей - непрерывного и импульсного - дает большие возможности для лечебных и исследовательских работ. Встроенный фотометр позволяет устанавливать и контролировать мощность облучения. Дискретная установка времени и плавная установка частоты импульсов облучения удобны для эксплуатации аппарата. Простота управления позволяет использование аппарата средним медицинским персоналом.

Рисунок 20 - Лазерный терапевтический аппарат «Альфа 1М»

Технические характеристики аппарата приведены в таблице 1.

Таблица 7 - Технические характеристики лазерного терапевтического аппарата «Альфа 1М»

В начале 70-х годов академиком М.М. Красновым и его коллегами из 2-го Московского медицинского института были предприняты усилия для излечения глаукомы (возникает из-за нарушений оттока внутриглазной жидкости и, как следствие, повышения внутриглазного давления) при помощи лазера. Лечение глаукомы проводилось соответствующими лазерными установками, созданными совместно с физиками.

Лазерная офтальмологическая установка «Ятаган» не имеет зарубежных аналогов. Предназначена для проведения хирургических операций переднего отдела глаза. Позволяет лечить глаукому и катаракту, не нарушая целостности наружных оболочек глаза. В установке используется импульсный лазер на рубине. Энергия излучения, содержащаяся в серии из нескольких световых импульсов, составляет от 0,1 до 0,2 Дж. Длительность отдельного импульса от 5 до 70 нс., интервал между импульсами от 15до 20 мкс. Диаметр лазерного пятна от 0,3 до 0,5 мм. Лазерная установка «Ятаган 4» с длительностью импульса 10-7 с., с длиной волны излучения 1,08 мкм и диаметром пятна 50 мкм. При таком облучении глаза решающее значение приобретает не тепловое, а фотохимическое и даже механическое действие лазерного луча (возникновение ударной волны). Сущность метода заключается в том, что лазерный «выстрел» определенной мощности направляется в угол передней камеры глаза и образует микроскопический «канал» для оттока жидкости и тем самым восстанавливает дренажные свойства радужной оболочки, создав нормальный отток внутриглазной жидкости. При этом луч лазера свободно проходит сквозь прозрачную роговицу и «взрывается» на поверхности радужной оболочки. При этом происходит не прожигание, которое приводит к воспалительным процессам радужной оболочки и быстрой ликвидации протоки, а пробивание отверстия. Процедура занимает примерно от 10 до 15 минут. Обычно пробивают 15-20 отверстий (протоков) для оттока внутриглазной жидкости.

На базе Ленинградской клиники глазных болезней Военно-медицинской академии группа специалистов во главе с доктором медицинских наук профессором В. В.Волковым использовала свою методику лечения дистрофических заболеваний сетчатки и роговицы с помощью маломощного лазера ЛГ-75 , работающего в непрерывном режиме. При этом лечении на сетчатку глаза действует излучение малой мощности, равной 25 мВт. Причем излучение рассеянное. Длительность одного сеанса облучения не превышает 10 мин. За 10-15 сеансов с интервалами между ними от одного до пяти дней врачи успешно излечивают кератит воспаление роговицы и другие болезни воспалительного характера. Режимы лечения получены опытным путем.

В 1983 г. американский офтальмолог С. Трокел высказал идею о возможности применения ультрафиолетового эксимерного лазера для коррекции близорукости. В нашей стране исследования в этом направлении проводились в Московском НИИ «Микрохирургия глаза» под руководством профессора С.Н. Федорова и А. Семенова.

Для проведения подобных операций совместными усилиями МНТК «Микрохирургия глаза» и институтом общей физики под руководством академика А. М. Прохорова создана лазерная установка «Профиль 500» с уникальной оптической системой, не имеющих аналогов в мире. При воздействии на роговицу полностью исключается возможность ожога, поскольку нагрев ткани не превышает 4-8єС. Продолжительность операции 20-70 секунд в зависимости от степени близорукости. С 1993 г. «Профиль 500» успешно используется в Японии, в Токио и Осаке, в Иркутском межрегиональном лазерном центре.

Гелий-неоновый лазерный офтальмологический аппарат МАКДЭЛ-08 (ЗАО «МАКДЭЛ-Технологии»), изображенный на рисунке 11 имеет цифровую систему управления, измеритель мощности, световолоконный подвод излучения, комплекты оптических и магнитных насадок. Лазерный аппарат работает от сети переменного тока частотой 50 Гц с номинальным напряжением 220 В±10%. Позволяет устанавливать время сеанса (лазерного излучения) в пределах от 1 до 9999 секунд погрешностью не более 10%. Имеет цифровое табло, позволяющий производить начальную установку времени и контроль времени до окончания процедуры. В случае необходимости сеанс может быть прерван досрочно. Аппарат обеспечивает частоту модуляцию лазерного излучения от 1 до 5 Гц с шагом 1 Гц, кроме того, имеется режим непрерывного излучения, при установке частоты 0 Гц.

Рисунок 20 - Лазерный офтальмологический аппарат МАКДЭЛ-08

Инфракрасный лазерный аппарат МАКДЭЛ-09 предназначен для коррекции аккомодационно-рефракционных нарушений зрения. Лечение заключается в выполнении 10-12 процедур по 3-5 минут. Результаты терапии сохраняются на протяжении 4-6 месяцев. При снижении показателей аккомодации необходимо проводить повторный курс. Процесс улучшения объективных показателей зрения растягивается на 30-40 дней после проведения процедур. Средние величины положительной части относительной аккомодации устойчиво увеличиваются на 2,6 дптр. и достигают уровня нормальных показателей. Максимальное увеличение резерва 4,0 дптр., минимальное 1,0 дптр. Реоциклографические исследования показывают устойчивое увеличение объема циркулирующей крови в сосудах цилиарного тела. Аппарат позволяет устанавливать время сеанса лазерного излучения в пределах от 1 до 9 минут. Цифровое табло на блоке управления позволяет производить начальную установку времени, а также контролировать время до окончания сеанса. В случае необходимости сеанс может быть прерван досрочно. По окончании сеанса лечения аппарат подает звуковой предупредительный сигнал. Система регулирования межцентрового расстояния позволяет устанавливать расстояния между центрами каналов от 56 до 68 мм. Установка требуемого межцентрового расстояния может производиться с помощью линейки на исполнительном блоке, или по изображению реперных светодиодов.

Аргоновый лазер модели ARGUS фирмы Aesculap Meditek (Германия) для офтальмологии, применяемый для фотокоагуляции сетчатки глаза. Только в Германии используются более 500 аргоновых лазеров, причем все они работают безопасно и надежно. ARGUS имеет удобное управление, совместим с общепринятыми моделями щелевых ламп фирм Zeiss и Haag-Streit. ARGUS оптимально подготовлен для работы вместе с Nd:YAG-лазером на одном рабочем месте.

Хотя ARGUS спроектирован как единый блок, штатив с инструментом и лазерный блок могут быть размещены друг возле друга или же в разных местах и помещениях, благодаря соединительному кабелю длиной до 10 метров. Регулируемый по высоте штатив инструмента предоставляет максимальную свободу для пациента и врача. Даже если пациент сидит в инвалидном кресле, лечить его не представляет никакой трудности.

С целью защиты глаз в ARGUS интегрирован управляемый малошумный фильтр для врача. Фильтр вводится в лазерный пучок при нажатии ножного выключателя, т.е. лишь непосредственно перед запуском лазерной вспышки. Фотоэлементы и микропроцессоры контролируют его корректное положение. Оптимальное освещение зоны коагуляции обеспечивается специальным устройством ведения лазерного луча. Пневматический микроманипулятор позволяет производить точное позиционирование луча одной рукой.

Технические характеристики аппарата:

Тип лазера аргоново-ионный лазер непрерывного действия для офтальмологической ВеО-керамической трубки

Мощность на роговице:

на роговице: 50 мВт - 3000 мВт для всех линий, 50 мВт - 1500 мВт для 514 нм

при блоке питания с ограниченным потреблением тока:

на роговице: 50 мВт - 2500 мВт для всех линий, 50 мВт - 1000 мВт для 514 нм

Пилотный луч аргоновый для всех линий или 514 нм, максимально 1мВт

Длительность импульса 0,02 - 2,0 сек, регулируемая в 25 ступенях или плавно

Последовательность импульсов 0,1 - 2,5 сек., с промежутками, регулируемыми в 24 ступенях

Запуск импульса ножным выключателем; в режиме последовательности импульсов нужная серия вспышек включается нажатием ножного выключателя;

функция прерывается при отпускании педали

Подвод луча световодом, волокно диам. 50 мкм, длиной 4,5 м, на обоих концах с разъемом SMA

Дистанционное управление для выбора предлагаются:

дистанционное управление 1: настройка вручную маховичком;

дистанционное управление 2: настройка контактными площадками пленочной клавиатуры.

Общие признаки: электролюминесцентный дисплей, индикация мощности в цифровом и аналоговом виде, цифровое показание всех остальных параметров настройки, показание рабочего состояния (напр. рекомендации по сервису) явным текстом

Управление микропроцессорное, контроль над мощностью, защитным фильтром для врача и затворами в 10-миллисекундном режиме

Охлаждение

воздухом: интегрированные вентиляторы пониженного уровня шума

водой: расход от 1 до 4 л/мин, при давлении от 2 до 4 бар и температуре не выше 24 єС

Сетевое питание для выбора предлагаюрся три различных блока:

перем. ток, однофазн с нулевым проводом 230 В, 32 А, 50/60 Гц

перем. ток, однофазн. с органичением максимально потребляемого тока на 25 А

трехфазный ток, три фазы и нулевой провод, 400 В, 16 А, 50/60 Гц

Протоколирование результатов: печать параметров лечения с помощью опционального принтера

Габариты

прибор: 95см х 37см х 62см (Ш х Г х В)

столик: 93см х 40см (Ш х Г)

высота столика: 70 - 90 см

«Лазерный скальпель» нашел применение при заболеваниях органов пищеварения (O.K. Скобелкин), кожно-пластическои хирургии и при заболеваниях желчных путей (А.А. Вишневский), в кардиохирургии (А. Д. Арапов) и многих других областях хирургии.

В хирургии применяется СО2 лазеры, излучающие в невидимой инфракрасной области электромагнитного спектра, что накладывает определенные условия при хирургическом вмешательстве, особенно во внутренние органы человека. Из-за невидимости лазерного луча и сложности манипулирования им (рука хирурга не имеет обратной связи не чувствует момент и глубину рассечения) используются зажимы и указки, обеспечивающие точность разреза.

Первые попытки применения лазера в хирургии удачными были не всегда, травмировались близлежащие органы, луч прожигал ткани. Кроме того, при неосторожном обращении лазерный луч мог оказаться опасным и для врача. Но несмотря на перечисленные трудности лазерная хирургия прогрессировала. Так, в начале 70-х годов под руководством академика Б. Петровского, профессор Скобелкин, доктор Брехов и инженер А. Иванов приступили к созданию лазерного скальпеля «Скальпель 1» (рисунок 12).

Рисунок 20 - Лазерная хирургическая установка «Скальпель-1»

Лазерная хирургическая установка «Скальпель 1» применяется при операциях на органах желудочно-кишечного тракта, при остановке кровотечений из острых язв желудочно-кишечного тракта, при кожно-пластических операциях, при лечении гнойных ран, при гинекологических операциях. Использован СО2 лазер непрерывного излучения с мощностью на выходе из световода 20 Вт. Диаметр лазерного пятна от 1 до 20 мкм.

Схема механизма действия света СО2 лазера на ткани представлена на рисунке 13.

Рисунок 20 - Схема механизма действия света CO2 лазера на ткани

С помощью лазерного скальпеля операции проводят бесконтактно, свет CO2-лазера обладает антисептическим и антибластическим действиями, при этом образуется плотная коагуляционная плёнка, которая обусловливает эффективный гемостаз (просветы артериальных сосудов до 0,5 мм и венозных до 1 мм в диаметре завариваются и не требуют перевязки лигатурами), создаёт барьер против инфекционных (включая вирусы) и токсических агентов, обеспечивая при этом высокоэффективную абластику, стимулирует посттравматическую регенерацию тканей и предотвращает их рубцовые изменения (см. схему).

«Лазермед» (Конструкторское бюро приборостроения) построен на основе полупроводниковых лазеров, излучающих на длине волны 1,06 мкм. Аппарат отличается высокой надежностью, малыми габаритными размерами и весом. Доставка излучения к биоткани производится через лазерный блок либо при помощи световода. Наведение основного излучения производится пилотной подсветкой полупроводникового лазера. Лазер 4 класса опасности по ГОСТ Р 50723-94, I класса электробезопасности с типом защиты B по ГОСТ Р 50267.0-92.

Лазерный хирургический аппарат «Ланцет-1» (рисунок 14) - модель СО2-лазера, предназначенная для проведения хирургических операций в различных областях медицинской практики.

Рисунок 20 - Лазерный хирургический аппарат «Ланцет-1»

Аппарат горизонтальной компоновки, портативный, имеет оригинальную упаковку в виде кейса, отвечает самым современным требованиям, предъявляемым к хирургическим лазерным установкам как по своим техническим возможностям, так и по обеспечению оптимальных условий труда хирурга, простоте управления и дизайну.

Технические характеристики аппарата приведены в таблице 2.

Таблица 7 - Технические характеристики лазерного хирургического аппарата «Ланцет-1»

Длина волны излучения, мкм

Выходная мощность излучения (регулируемая), Вт

Мощность в режиме Медипульс, Вт

Диаметр лазерного луча на ткани (переключаемый), мкм

Наведение основного излучения лучом диодного лазера

2 мВт, 635 нм

Режимы излучения (переключаемые)

непрерывный, импульсно-периодический, Медипульс

Время экспозиции излучения (регулируемое), мин

Длительность импульса излучения в импульсно-периодическом режиме (регулируемая), с

Длительность паузы между импульсами, с

Пульт управления

выносной

Включение излучения

ножная педаль

Удаление продуктов сгорания

система эвакуации дыма

Радиус операционного пространства, мм

Система охлаждения

автономная, воздушно-жидкостного типа

Размещение в операционной

настольное

Электропитание (переменный ток)

220 В, 50 Гц,
600 Вт

Габаритные размеры, мм

Масса, кг

6. Медицинская лазерная аппаратура, разработанная КБАС

Насадка оптическая универсальная (НОУ ) к лазерам типа ЛГН-111 , ЛГ-75-1 (рисунок 15) предназначена для фокусировки лазерного излучения в световод и измененения диаметра пятна при внешнем облучении.

Рисунок 20 - Насадка оптическая универсальная (НОУ)

Насадка применяется при лечении ряда заболеваний, связанных с нарушением кровообращения, путем ввода световода в вену и облучения крови, а также при лечении дерматологических и ревматических заболеваний. Насадка проста в обращении, легко монтируется на корпусе лазера, быстро настраивается на рабочий режим. При внешнем облучении изменение диаметра пятна производится перемещением линзы конденсора.

Технические характеристики НОУ приведены в таблице 3.

Таблица 7 - Технические характеристики НОУ

Установка физиотерапевтическая «Спрут-1» (рисунок 16) предназначена для лечения ряда заболеваний в различных областях медицины: травматология, дерматология, стоматология, ортопедия, рефлексотерапия, невралгия.

Рисунок 20 - Лазерная физиотерапевтическая установка «Спрут-1»

Лечение установкой «Спрут-1» обеспечивает отсутствие аллергических реакций, безболезненность и асептичность, а так же ведет к существенному сокращению сроков лечения, экономии лекарственных средств.

Принцип работы основан на использовании стимулирующего воздействия энергии лазерного излучения с длиной волны 0,63 мкм.

Установка состоит из излучателя, положение которого плавно регулируется относительно горизонтальной плоскости, блока питания с конструктивно включенными в него счетчиком количества включений и счетчиком суммарной наработки установки.

Излучатель и блок питания крепятся на легкую мобильную подставку.

Технические характеристики установки «Спрут-1» приведены в таблице 4.

Таблица 7 - Технические характеристики установки физиотерапевтической «Спрут-1»

Лазерная офтальмологическая терапевтическая установка «Лота» (рисунок 17) применяется при лечении эрозий и язв трофического характера, после травм, ожогов, кератитов и кератоконъюктивитов, послеоперационных кератопатий, а так же для ускорения процесса приживления трансплантанта при пересадке роговицы.

Рисунок 20 - Лазерная офтальмологическая терапевтическая установка «Лота»

Технические характеристики установки приведены в таблице 5.

Таблица 7 - Технические характеристики лазерной установки «Лота»

Длина волны излучения, мкм

Плотность мощности излучения в плоскости облучения, Вт/см2

не более 5х105

Мощность излучения на выходе установки, мВт

Характер регулировки мощности в указанном диапазоне

Потребляемая мощность, ВА

не более 15

Средняя наработка на отказ, час

не менее 5000

Средний ресурс

не менее 20000

Масса, кг

Медицинская лазерная установка «Альмицин» (рисунок 18) применяется в терапии, стоматологии, фтизиатрии, пульмонологии, дерматологии, хирургии, гинекологии, проктологии и урологии. Методы обработки: бактерицидный эффект, стимуляция микроциркуляции источника повреждения, нормализация иммунных и биохимических процессов, улучшение регенерации, увеличение эффективности медикаментозной терапии.

Рисунок 20 - Медицинская лазерная установка «Альмицин»

Технические характеристики установки приведены в таблице 6.

Таблица 7 - Технические характеристики медицинской лазерной установки «Альмицин»

Спектральный диапазон

близкий к УФ

Конструкция

Вывод пучка

световод

Диаметр световода, мкм

Длина световода, м

Напряжение питающей сети при частоте 50 Гц, В

Потребление энергии, Вт

не более 200

Управление

автоматическое

Время облучения, мин

не более 3

Размеры каждого из блоков, мм

не более 40 кг

Световолоконная приставка «Ариадна-10» (рисунок 19) предлагается взамен имеющего малую степень подвижности и инерционного зеркально-шарнирного механизма передачи излучения для хирургических установок (типа «Скальпель-1») на CO2-лазерах.

Основными элементами приставки являются: устройство ввода излучения и световод общей хирургии.

Рисунок 20 - Световолоконная приставка «Ариадна-10»

Световод приставки работает совместно с дымоотсосным устройством, что позволяет одновременно с проведением хирургических операций удалять продукты взаимодействия излучения с биотканями из операционного пространства.

Благодаря гибкости световода существенно расширяются возможности использования лазерных хирургических установок на CO2-лазерах.

Технические характеристики установки приведены в таблице 7.

Таблица 7 - Технические характеристики световолоконной приставки «Ариадна-10»

Схема приставки представлена на рисунке 20.

Рисунок 20 - Схема световолоконной приставки «Ариадна-10»

Список использованных источников

1. Захаров В.П., Шахматов Е.В. Лазерная техника: учеб. пособие. - Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2006. - 278 с.

2. Справочник по лазерной технике. Пер. с немецкого. М., Энергоатомиздат, 1991. - 544 с.

3. Жуков Б.Н., Лысов Н.А., Бакуцкий В.Н., Анисимов В.И. Лекции по лазерной медицине: Учебное пособие. - Самара: СМИ, 1993. - 52 с.

4. Применение лазерной хирургической установки «Скальпель-1» для лечения стоматологических заболеваний. - М.: Министерство здравоохранения СССР, 1986. - 4 с.

5. Канюков В.Н., Терегулов Н.Г., Винярский В.Ф., Осипов В.В. Развитие научно-технических решений в медицине: Учебное пособие. - Оренбург: ОГУ, 2000. - 255 с.

За последние полвека лазеры нашли применение в офтальмологии, онкологии, пластической хирургии и многих других областях медицины и медико-биологических исследованиях.

О возможности использования света для лечения болезней было известно тысячи лет назад. Древние греки и египтяне применяли солнечное излучение в терапии, и эти две идеи даже были связаны друг с другом в мифологии - греческий бог Аполлон был богом солнца и исцеления.

И только после изобретения источника когерентного излучения более 50 лет назад действительно был выявлен потенциал использования света в медицине.

Благодаря особым свойствам, лазеры гораздо эффективнее, чем радиация солнца или других источников. Каждый квантовый генератор работает в очень узком диапазоне длин волн и излучает когерентный свет. Также лазеры в медицине позволяют создавать большие мощности. Пучок энергии может быть сосредоточен в очень маленькой точке, благодаря чему достигается ее высокая плотность. Эти свойства привели к тому, что сегодня лазеры используются во многих областях медицинской диагностики, терапии и хирургии.

Лечение кожи и глаз

Применение лазеров в медицине началось с офтальмологии и дерматологии. Квантовый генератор был открыт в 1960 году. И уже через год после этого Леон Голдман продемонстрировал, как рубиновый красный лазер в медицине может быть использован для удаления капиллярной дисплазии, разновидности родимых пятен, и меланомы.

Такое применение основано на способности источников когерентного излучения работать на определенной длине волны. Источники когерентного излучения в настоящее время широко используются для удаления опухолей, татуировок, волос и родинок.

В дерматологии применяются лазеры различных типов и длин волн, что обусловлено разными видами излечиваемых поражений и основного поглощающего вещества внутри них. также зависит от типа кожи пациента.

Сегодня нельзя практиковать дерматологию или офтальмологию, не имея лазеров, так как они стали основными инструментами лечения пациентов. Применение квантовых генераторов для коррекции зрения и широкого спектра офтальмологических приложений выросло после того, как Чарльз Кэмпбелл в 1961 году стал первым врачом, использовавшим красный лазер в медицине для исцеления пациента с отслоением сетчатки.

Позже для этой цели офтальмологи стали применять аргоновые источники когерентного излучения в зеленой части спектра. Здесь были задействованы свойства самого глаза, особенно его линзы, фокусировать луч в области отслоения сетчатки. Высококонцентрированная мощность аппарата ее буквально приваривает.

Больным с некоторыми формами макулодистрофии может помочь лазерная хирургия - лазерная коагуляция и фотодинамическая терапия. В первой процедуре луч когерентного излучения используется для герметизации кровеносных сосудов и замедления их патологического роста под макулой.

Подобные исследования были проведены в 1940 годах с солнечным светом, но для их успешного завершения врачам были необходимы уникальные свойства квантовых генераторов. Следующим применением аргонового лазера стала остановка внутренних кровотечений. Селективное поглощение зеленого света гемоглобином - пигментом красных кровяных клеток - использовалось для блокирования кровоточащих кровеносных сосудов. Для лечения рака разрушают кровеносные сосуды, входящих в опухоль и снабжающие ее питательными веществами.

Этого невозможно добиться, используя солнечный свет. Медицина очень консервативна, как это и должно быть, но источники когерентного излучения получили признание в разных ее областях. Лазеры в медицине заменили многие традиционные инструменты.

Офтальмология и дерматология также извлекли выгоду из эксимерных источников когерентного излучения в ультрафиолетовом диапазоне. Они стали широко использоваться для изменения формы роговицы (LASIK) для коррекции зрения. Лазеры в эстетической медицине применяются для удаления пятен и морщин.

Прибыльная косметическая хирургия

Такие технологические разработки неизбежно популярны среди коммерческих инвесторов, так как обладают огромным потенциалом получения прибыли. Аналитическая компания Medtech Insight в 2011 г. оценила объем рынка лазерного косметического оборудования на сумму более 1 млрд долларов США. Действительно, несмотря на снижение общего спроса на медицинские системы во время глобального спада, косметические операции, основанные на использовании квантовых генераторов, продолжают пользоваться постоянным спросом в Соединенных Штатах - доминирующем рынке лазерных систем.

Визуализация и диагностика

Лазеры в медицине играют важную роль в раннем выявлении рака, а также многих других заболеваний. Например, в Тель-Авиве группа ученых заинтересовалась ИК-спектроскопией с использованием инфракрасных источников когерентного излучения. Причиной этого является то, что рак и здоровая ткань могут иметь различную проходимость в инфракрасном диапазоне. Одним из перспективных применений этого метода является выявление меланом. При раке кожи ранняя диагностика очень важна для выживаемости пациентов. В настоящее время обнаружение меланомы делается на глаз, поэтому остается полагаться на мастерство врача.

В Израиле раз в год каждый человек может пойти на бесплатный скрининг меланомы. Несколько лет назад в одном из крупных медицинских центров проводились исследования, в результате которых появилась возможность наглядно наблюдать разницу в ИК-диапазоне разницу между потенциальными, но неопасными признаками, и настоящей меланомой.

Кацир, организатор первой конференции SPIE по биомедицинской оптике в 1984 году, и его группа в Тель-Авиве также разработали оптические волокна, прозрачные для инфракрасных длин волн, что позволило распространить этот метод на внутреннюю диагностику. Кроме того, это может стать быстрой и безболезненной альтернативой цервикальному мазку в гинекологии.

Голубой в медицине нашел применение в флюоресцентной диагностике.

Системы на основе квантовых генераторов также начинают заменять рентген, который традиционно использовался в маммографии. Рентгеновские лучи ставят врачей перед сложной дилеммой: для достоверного обнаружения раковых образований необходима их высокая интенсивность, но рост радиации сам по себе увеличивает риск заболевания раком. В качестве альтернативы изучается возможность использования очень быстрых лазерных импульсов для снимка груди и других частей тела, например, мозга.

ОКТ для глаз и не только

Лазеры в биологии и медицине нашли применение в оптической когерентной томографии (ОКТ), что вызвало волну энтузиазма. Этот метод визуализации использует свойства квантового генератора и может дать очень четкие (порядка микрона), поперечные и трехмерные изображения биологической ткани в режиме реального времени. ОКТ уже применяется в офтальмологии, и может, например, позволить офтальмологу увидеть поперечное сечение роговицы для диагностики заболеваний сетчатки и глаукомы. Сегодня техника начинает использоваться также и в других областях медицины.

Одна из крупнейших областей, формирующихся благодаря ОКТ, занимается получением волоконно-оптических изображений артерий. может быть применена для оценки состояния склонной к разрыву нестабильной бляшки.

Микроскопия живых организмов

Лазеры в науке, технике, медицине также играют ключевую роль во многих видах микроскопии. В этой области было сделано большое число разработок, целью которых является визуализация того, что происходит внутри тела пациента без использования скальпеля.

Самым сложным в удалении рака является необходимость постоянно прибегать к услугам микроскопа, чтобы хирург мог убедиться, что все сделано правильно. Возможность делать микроскопию «вживую» и в реальном времени является значительным достижением.

Новое применение лазеров в технике и медицине - сканирование в ближней зоне оптической микроскопии, которая может производить изображения с разрешением гораздо большим, чем у стандартных микроскопов. Этот метод основан на оптических волокнах с насечками на торцах, размеры которых меньше длины волны света. Это позволило субволновую визуализацию и заложило основу для получения изображения биологических клеток. Использование данной технологии в ИК-лазерах позволит лучше понять болезнь Альцгеймера, рак и другие изменения в клетках.

ФДТ и другие методы лечения

Разработки в области оптических волокон помогают расширить возможности применения лазеров и в других сферах. Кроме того, что они позволяют проводить диагностику внутри организма, энергия когерентного излучения может быть передана туда, где в этом есть необходимость. Это может быть использовано в лечении. Волоконные лазеры становятся гораздо более продвинутыми. Они кардинально изменят медицину будущего.

Область фотомедицины, использующая светочувствительные химические вещества, которые взаимодействуют с телом особым образом, может прибегнуть к помощи квантовых генераторов как для диагностики, так и для лечения пациентов. В фотодинамической терапии (ФДТ), например, лазер и фоточувствительное лекарственное средство может восстановить зрение у больных с «влажной» формой возрастной макулярной дегенерации, основной причиной слепоты у людей в возрасте старше 50 лет.

В онкологии некоторые порфирины накапливаются в раковых клетках и флуоресцируют при освещении определенной длиной волны, указывая на место расположения опухоли. Если эти же самые соединения затем осветить другой длиной волны, они становятся токсичными и убивают поврежденные клетки.

Красный газовый гелий-неоновый лазер в медицине применяется в лечении остеопороза, псориаза, трофических язв и др., так как данная частота хорошо поглощается гемоглобином и ферментами. Излучение замедляет воспалительные процессы, предотвращает гиперемию и отеки, улучшает кровоснабжение.

Персонализированное лечение

Еще две области, в которых найдется применение для лазеров - генетика и эпигенетика.

В будущем все будет происходить на наноуровне, что позволит заниматься медициной в масштабах клетки. Лазеры, которые могут генерировать фемтосекундные импульсы и настраиваться на определенную длину волны, являются идеальными партнерами для медиков.

Это откроет дверь для персонализированного лечения, основанного на индивидуальном геноме пациента.

Леон Голдман - родоначальник лазерной медицины

Говоря об использовании квантовых генераторов в лечении людей, нельзя не упомянуть Леона Голдмана. Он известен как «отец» лазерной медицины.

Уже через год после изобретения источника когерентного излучения Голдман стал первым исследователем, применившим его для лечения заболевания кожи. Техника, которую применил ученый, проложила путь последующему развитию лазерной дерматологии.

Его исследования в середине 1960 годов привели к использованию рубинового квантового генератора в хирургии сетчатки глаза и к таким открытиям, как возможность когерентного излучения одновременно разрезать кожу и запечатывать кровеносные сосуды, ограничивая кровотечение.

Голдман, работавший на протяжении большей части своей карьеры дерматологом в университете Цинциннати, основал Американское общество лазеров в медицине и хирургии и помог заложить основы безопасности лазеров. Умер в 1997 г.

Миниатюризация

Первые 2-микронные квантовые генераторы были размером с двуспальную кровать и охлаждались жидким азотом. Сегодня появились диодные, умещающиеся в ладони, и еще более миниатюрные Такого рода изменения прокладывают путь для новых сфер применения и разработок. Медицина будущего будет располагать крошечными лазерами для хирургии головного мозга.

Благодаря технологическому прогрессу происходит постоянное снижение затрат. Подобно тому как лазеры стали привычными в бытовой технике, они начали играть ключевую роль в больничном оборудовании.

Если раньше лазеры в медицине были очень большими и сложными, то сегодняшнее их производство из оптического волокна значительно снизило стоимость, а переход на наноуровень позволит еще больше сократить затраты.

Другие применения

С помощью лазеров урологи могут лечить стриктуру уретры, доброкачественные бородавки, мочевые камни, контрактуру мочевого пузыря и увеличение простаты.

Использование лазера в медицине позволило нейрохирургам делать точные разрезы и производить эндоскопический контроль головного и спинного мозга.

Ветеринары применяют лазеры для эндоскопических процедур, коагуляции опухолей, выполнения разрезов и фотодинамической терапии.

Стоматологи используют когерентное излучение для проделывания отверстий, в хирургии десен, для проведения антибактериальных процедур, зубной десенсибилизации и рото-лицевой диагностики.

Лазерный пинцет

Биомедицинские исследователи во всем мире применяют оптические пинцеты, клеточные сортировщики, а также множество других инструментов. Лазерные пинцеты обещают лучшую и более быструю диагностику рака и использовались для захвата вирусов, бактерий, мелких металлических частиц и нитей ДНК.

В оптическом пинцете пучок когерентного излучения применяется для удержания и вращения микроскопических объектов, аналогично тому, как металлический или пластиковый пинцет способен подобрать маленькие и хрупкие предметы. Отдельными молекулами можно манипулировать, прикрепляя их к стеклышкам микронного размера или шарикам из полистирола. Когда луч попадает в шарик, он искривляется и оказывает небольшое воздействие, подталкивая шарик прямо в центр луча.

Это создает «оптическую ловушку», которая способна удерживать небольшую частицу в пучке света.

Лазер в медицине: плюсы и минусы

Энергия когерентного излучения, интенсивность которой можно модулировать, используется для рассечения, уничтожения или изменения клеточной или внеклеточной структуры биологических тканей. Кроме того, применение лазеров в медицине, кратко говоря, уменьшает риск инфицирования и стимулирует заживление. Применение квантовых генераторов в хирургии увеличивает точность рассечения, однако, они представляют опасность для беременных и есть противопоказания по употреблению фотосенсибилизирующих лекарств.

Сложная структура тканей не позволяет сделать однозначную интерпретацию результатов классических биологических анализов. Лазеры в медицине (фото) являются эффективным инструментом для уничтожения раковых клеток. Однако мощные источники когерентного излучения действуют без разбора и разрушают не только пораженные, но и окружающие ткани. Это свойство - важный инструмент метода микродиссекции, используемый для проведения молекулярного анализа в интересующем месте с возможностью выборочного разрушения лишних клеток. Цель данной технологии заключается в преодолении гетерогенности, присутствующей во всех биологических тканях, для облегчения их исследования по четко определенной популяции. В этом смысле, лазерная микродиссекция внесла значительный вклад в развитие исследований, в понимание физиологических механизмов, которые сегодня можно четко продемонстрировать на уровне популяции и даже одной клетки.

Функционал тканевой инженерии сегодня стал основным фактором в развитии биологии. Что произойдет, если разрезать актиновые волокна во время деления? Будет ли эмбрион дрозофилы стабильным, если разрушить клетку при фолдинге? Каковы параметры, участвующие в меристемной зоне растения? Все эти вопросы можно решить с помощью лазеров.

Наномедицина

В последнее время появилось множество наноструктур, обладающих свойствами, пригодными для целого ряда биологических применений. Важнейшими из них являются:

  • квантовые точки - крошечные светоизлучающие частицы нанометровых размеров, используемые в высокочувствительной клеточной визуализации;
  • магнитные наночастицы, которые нашли применение в медицинской практике;
  • полимерные частицы для инкапсулированных терапевтических молекул;
  • металлические наночастицы.

Развитие нанотехнологий и применение лазеров в медицине, кратко говоря, революционизировало способ введения лекарственных средств. Суспензии из наночастиц, содержащие лекарственные препараты, могут повысить терапевтический индекс многих соединений (увеличить растворимость и эффективность, снизить токсичность) путем селективного воздействия на пораженные ткани и клетки. Они доставляют действующее вещество, а также регулируют высвобождение активного ингредиента в ответ на внешнюю стимуляцию. Нанотераностика является дальнейшим экспериментальным подходом, обеспечивающим двойное использование наночастиц, соединения лекарственное средство, терапию и средства диагностической обработки изображений, что открывает путь к персонализированному лечению.

Применение лазеров в медицине и биологии для микродиссекции и фотоаблации позволило на разных уровнях понять физиологические механизмы развития болезни. Результаты помогут определить лучшие методы диагностики и лечения каждого пациента. Развитие нанотехнологий в тесной связи с достижениями в области визуализации также будут незаменимы. Наномедицина является перспективной новой формой лечения некоторых видов рака, инфекционных заболеваний или диагностики.

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем.

Изучение механизмов воздействия лазерного излучения различных длин волн и уровней энергии на биологические ткани позволяет создавать лазерные медицинские многофункциональные приборы, диапазон применения которых в клинической практике стал настолько широким, что очень трудно ответить на вопрос: для лечения каких заболеваний лазеры не применяют?

Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика.

Нашей областью деятельности являются лазеры для применений в хирургии и косметологии, имеющие достаточно большую мощность для разрезания, вапоризации, коагуляции и других структурных изменений в биоткани.

В ЛАЗЕРНОЙ ХИРУРГИИ

Применяются достаточно мощные лазеры со средней мощностью излучения десятки ватт, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению. Эти и другие характеристики хирургических лазеров обуславливают применение в хирургии различных видов хирургических лазеров, работающих на разных лазерных активных средах.

Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами.

1. Хирургические лазерные системы обеспечивают:

2. эффективную контактную и бесконтактную вапоризацию и деструкцию биоткани;

3. сухое операционное поле;

4. минимальное повреждение окружающих тканей;

5. эффективный гемо- и аэростаз;

6. купирование лимфатических протоков;

7. высокую стерильность и абластичность;

8. совместимость с эндоскопическими и лапароскопическими инструментам

Это дает возможность эффективно использовать хирургические лазеры для выполнения самых разнообразных оперативных вмешательств в урологии, гинекологии, оториноларингологии, ортопедии, нейрохирургии и т. д.

Ольга (княгиня Киевская)

[править]

Материал из Википедии - свободной энциклопедии

(Перенаправлено с Княгиня Ольга)Ольга

В. М. Васнецов. «Княгиня Ольга»

3-й княгиня Киева

Предшественник: Игорь Рюрикович

Преемник: Святослав Игоревич

Вероисповедание: Язычество, перешла в христианство

Рождение: неизвестна

Династия: Рюриковичи

Супруг: Игорь Рюрикович

Дети: Святослав Игоревич

Княги́ня О́льга, в крещении Еле́на († 11 июля 969) - княгиня, правила Киевской Русью после гибели мужа, князя Игоря Рюриковича, как регент с 945 до примерно 960 года. Первая из русских правителей приняла христианство ещё до крещения Руси, первая русская святая.

Спустя примерно 140 лет после её смерти древнерусский летописец так выразил отношение русских людей к первому правителю Киевской Руси, принявшему крещение: Была она предвозвестницей христианской земле, как денница перед солнцем, как заря перед рассветом. Она ведь сияла, как луна в ночи; так и она светилась среди язычников, как жемчуг в грязи.

1 Биография

1.1 Происхождение

1.2 Брак и начало правления

1.3 Месть древлянам

1.4 Правление Ольги

2 Крещение Ольги и церковное почитание

3 Историография по Ольге

4 Память о Святой Ольге

4.1 В художественной литературе

4.2 Кинематограф

5 Первоисточники

[править]

Биография

[править]

Происхождение

Согласно самой ранней древнерусской летописи, «Повести Временных Лет», Ольга была родом из Пскова. Житие святой великой княгини Ольги уточняет, что родилась она в деревне Выбуты Псковской земли, в 12 км от Пскова выше по реке Великой. Имена родителей Ольги не сохранились, по Житию они были не знатного рода, «от языка варяжска». По мнению норманистов, варяжское происхождение подтверждается её именем, имеющим соответствие в древнескандинавском как Helga. Присутствие предположительно скандинавов в тех местах отмечено рядом археологических находок, возможно датируемых 1-й половиной X века. С другой стороны, в летописях имя Ольги часто передано славянской формой «Вольга». Известно и древнечешское имя Olha.

Княгиня Ольга на Памятнике «1000-летие России» в Великом Новгороде

Типографская летопись (конец XV века) и более поздний Пискаревский летописец передают слух, будто Ольга была дочерью Вещего Олега, который стал править Киевской Русью как опекун малолетнего Игоря, сына Рюрика: «Нецыи же глаголют, яко Ольгова дщери бе Ольга». Олег же поженил Игоря и Ольгу.

Так называемая Иоакимовская летопись, достоверность которой ставится историками под сомнение, сообщает о знатном славянском происхождении Ольги:

«Когда Игорь возмужал, оженил его Олег, выдал за него жену от Изборска, рода Гостомыслова, которая Прекраса звалась, а Олег переименовал её и нарек в своё имя Ольга. Были у Игоря потом другие жены, но Ольгу из-за мудрости её более других чтил».

Болгарские историки выдвигали также версию о болгарских корнях княгини Ольги, опираясь в основном на сообщение Нового Владимирского Летописца («Игоря же ожени [Олег] въ Болгарехъ, поятъ же за него княжну Ольгу».) и переводя летописное название Плесков не как Псков, но как Плиска - болгарская столица того времени. Названия обоих городов действительно совпадают в древнеславянской транскрипции некоторых текстов, что и послужило основанием для автора Нового Владимирского Летописца перевести сообщение «Повести временных лет» об Ольге из Пскова как об Ольге из болгар, так как написание Плесков для обозначения Пскова давно вышло из употребления.

[править]

Брак и начало правления

Первая встреча князя Игоря с Ольгой.

Худ. В. К. Сазонов

По «Повести временных лет» Вещий Олег женил Игоря Рюриковича, начавшего самостоятельно править с 912 года, на Ольге в 903 году. Дата эта подвергается сомнению, так как, согласно Ипатьевскому списку той же «Повести», их сын Святослав родился только в 942 году.

Возможно, чтобы разрешить это противоречие, поздние Устюжская летопись и Новгородская летопись по списку П. П. Дубровского сообщают о 10-летнем возрасте Ольги на момент свадьбы. Данное сообщение противоречит легенде, изложенной в Степенной книге (2-я половина XVI века), о случайной встрече с Игорем на переправе под Псковом. Князь охотился в тамошних местах. Переправляясь через реку на лодке, он заметил, что перевозчиком была юная девушка, переодетая в мужскую одежду. Игорь тотчас же «разгореся желанием» и стал приставать к ней, однако получил в ответ достойную отповедь: «Зачем смущаешь меня, княже, нескромными словами? Пусть я молода и незнатна, и одна здесь, но знай: лучше для меня броситься в реку, чем стерпеть поругание». О случайном знакомстве Игорь вспомнил, когда пришло время искать себе невесту, и послал Олега за полюбившейся девушкой, не желая никакой другой жены.

«Княгиня Ольга встречает тело князя Игоря». Эскиз В. И. Сурикова, 1915

Новгородская Первая летопись младшего извода, которая содержит в наиболее неизменном виде сведения из Начального свода XI века, оставляет сообщение о женитьбе Игоря на Ольге не датированным, то есть самые ранние древнерусские летописцы не имели сведений о дате свадьбы. Вполне вероятно, что 903 год в тексте ПВЛ возник в более позднее время, когда монах Нестор пытался привести начальную древнерусскую историю в хронологический порядок. После свадьбы имя Ольги упоминается в очередной раз только через 40 лет, в русско-византийском договоре 944 года.

Согласно летописи, в 945 году князь Игорь погибает от рук древлян после неоднократного взимания с них дани. Наследнику престола Святославу тогда было только 3 года, поэтому фактическим правителем Киевской Руси в 945 году стала Ольга. Дружина Игоря подчинилась ей, признав Ольгу представителем законного наследника престола. Решительный образ действий княгини в отношении древлян также мог склонить дружинников в её пользу.

[править]

Месть древлянам

Древляне после убийства Игоря прислали к его вдове Ольге сватов звать её замуж за своего князя Мала. Княгиня последовательно расправилась со старейшинами древлян, а затем привела к покорности народ древлян. Древнерусский летописец подробно излагает месть Ольги за смерть мужа:

«Мщение Ольги против идолов древлянских». Гравюра Ф. А. Бруни, 1839.

1-я месть княгини Ольги: Сваты, 20 древлян, прибыли в ладье, которую киевляне отнесли и бросили в глубокую яму на дворе терема Ольги. Сватов-послов закопали живьем вместе с ладьёй. Ольга посмотрела на них из терема и спросила: «Довольны ли честью?» А они закричали: «Ох! Хуже нам Игоревой смерти».

Вторая месть Ольги древлянам. Миниатюра из Радзивилловской летописи.

2-я месть: Ольга попросила для уважения прислать к ней новых послов из лучших мужей, что и было с охотой исполнено древлянами. Посольство из знатных древлян сожгли в бане, пока те мылись, готовясь к встрече с княгиней.

3-я месть: Княгиня с небольшой дружиной приехала в земли древлян, чтобы по обычаю справить тризну на могиле мужа. Опоив во время тризны древлян, Ольга велела рубить их. Летопись сообщает о 5 тысячах перебитых древлян.

Четвёртая месть Ольги древлянам. Миниатюра из Радзивилловской летописи.

4-я месть: В 946 году Ольга вышла с войском в поход на древлян. По Новгородской Первой летописи киевская дружина победила древлян в бою. Ольга прошлась по Древлянской земле, установила дани и налоги, после чего вернулась в Киев. В ПВЛ летописец сделал врезку в текст Начального свода об осаде древлянской столицы Искоростеня. По ПВЛ после безуспешной осады в течение лета Ольга сожгла город с помощью птиц, к ногам которых велела привязать зажжённую паклю с серой. Часть защитников Искоростеня были перебиты, остальные покорились. Схожая легенда о сожжении города с помощью птиц излагается также Саксоном Грамматиком (XII век) в его компиляции устных датских преданий о подвигах викингов и скальдом Снорри Стурлусоном.

ЛАЗЕРЫ в медицине

Лазер - устройство для получения узких пучков световой энергии высокой интенсивности. Лазеры были созданы в 1960 г. , СССР) и Ч. Таунсом (США), удостоенными за это открытие Нобелевской пре-мдп 1964 г. Существуют различные типы лазеров - газовые, жидкостные и работающие на твердых телах. Лазерное излучение может быть непрерывным и импульсным.

Сам термин “лазер”- это аббревиатура от английского “Light Amplification by Stimulated Emission of Radiation”, т. е. “усиление света вынужденным излучением”. Из физики известно, что “лазер - это источник когерентного электромагнитного излучения, возникающего в результате вынужденного испускания фотонов активной средой, находящейся в оптическом резонаторе". Для лазерного излучения характерна монохроматичность, высокая плотность и упорядоченность потока световой энергии. Многообразие используемых в наши дни источников такого излучения определяет разнообразие областей применения лазерных установок.

В медицину лазеры вошли в конце 1960-х годов. Вскоре сформировались три направления лазерной медицины, различие между которыми определялось мощностью светового потока лазера (и, как следствие, видом его биологического воздействия). Излучение низкой мощности (мВт) в основном используется в терапии крови, средней мощности (Вт) – в эндоскопии и фотодинамической терапии злокачественных опухолей, а высокой Вт) – в хирургии и косметологии. Хирургическое применение лазеров (т. н. “лазерные скальпели”) основано на прямом механическом воздействии высокоинтенсивного излучения, которое позволяет резать и “сваривать” ткани. Тот же эффект лежит в основе применения лазеров в косметологии и эстетической медицине (в последние годы наряду со стоматологией одна из самых прибыльных отраслей здравоохранения). Однако у биологов наибольший интерес вызывает феномен терапевтического воздействия лазеров. Известно, что низкоинтенсивное лазерное воздействие приводит к таким положительным эффектам, как повышение тонуса, устойчивость к стрессам, улучшение работы нервной, имунной эндокринной систем, устранению ишемических процессов, заживлению хронических язв и многим другим... Лазерная терапия, безусловно, высокоэффективна, но, что удивительно, до сих пор нет четкого представления об ее биологических механизмах! Ученые пока лишь разрабатывают модели, объясняющие этот феномен. Так, известно, что низкоинтенсивное лазерное излучение (НИЛИ) воздействует на пролиферативный потенциал клеток (то есть стимулирует их деление и развитие). Считается, что причина этого– в локальных изменениях температуры, которые могут стимулировать процессы биосинтеза в тканях. НИЛИ также укрепляет системы антиоксидантной защиты организма (тогда как излучение высокой интенсивности, напротив, приводит к массовому появлению активных форм кислорода.) Скорее всего, именно этими процессами и объясняется терапевтическое действие НИЛИ. Но, как уже упоминалось, существует и другой тип лазерной терапии - т. н. фотодинамическая терапия, применяемая для борьбы со злокачественными образованиями. Она основана на использовании открытых еще в 60-е годы фотосенсибилизаторов - специфических веществ, способных избирательно накапливаться в клетках (в основном раковых). При лазерном облучении средней мощности молекула фотосенсибилизатора поглощает световую энергию, переходит в активную форму и вызывает целый ряд разрушительных процессов в раковой клетке. Так, повреждаются митохондрии (внутриклеточные энергетические структуры), существенно меняется кислородный обмен, что приводит к появлению огромного количества свободных радикалов. Наконец, сильное нагревание воды внутри клетки вызывает разрушение ее мембранных структур (в частности внешней клеточной оболочки). Все это в итоге приводит к интенсивной гибели опухолевых клеток. Фотодинамическая терапия - сравнительно новая область лазерной медицины (развивается с середины 80-х годов) и пока еще не столь популярная, как, скажем, лазерная хирургия или офтальмология, однако именно на нее сейчас возлагают основные надежды врачи-онкологи.

В целом можно сказать, что лазерная терапия в наши дни - одна из наиболее динамично развивающихся отраслей медицины. Причем, что удивительно, не только традиционной. Некоторые терапевтические эффекты лазеров легче всего объясняются наличием в организме систем энергетических каналов и точек, используемых при акупунктурных воздействиях. Известны случаи, когда локальная обработка лазером отдельных тканей вызывала позитивные изменения в других частях организма. Ученым еще предстоит ответить на множество вопросов, связанных с целебными свойствами лазерного излучения, что, безусловно, откроет новые перспективы развития медицины в XXI веке.

Принцип действия лазерного луча основан на том, что энергия сфокуси-тэванного светового пучка резко повышает температуру в облучаемом месте и вызывает коагуляцию (свертывание) блологич. ткани. Особенности биологич. действия лазерного излучения зависят m типа лазера, мощности энергии, ее характера, структуры и биологич. ;зойств облучаемых тканей. Узкий световой пучок большой мощности дает возможность производить светокоагу-ляцию строго определенного участка тканей за доли секунды. Окружающие ткани при этом не страдают. Кроме коагуляции биологич. ткани, при большой мощности излучения возможно и взрывное ее разрушение от воздействия своеобразной ударной волны, образующейся в результате мгновенного перехода тканевой жидкости в газообразное состояние под влиянием высокой температуры. Имеют значение вид тканей, пх окраска (пигментация), толщина, плотность, степень наполнения кровью. Чем больше мощность лазерного излучения, тем глубже оно проникает и тем сильнее его действие.

Первыми использовали лазеры для лечения больных глазные врачи, применившие их для коагуляции сетчатой оболочки глаза при ее отслойке и разрыве (), а также для разрушения мелких внутриглазных опухолей и создания оптич. отверстия в глазу при вторичных катарактах. Кроме того, лазерным лучом уничтожают небольшие, поверхностно расположенные опухоли, коагулируют патологич. образования на поверхности кожи (пигментные пятна, сосудистые опухоли и т. д.). Лазерное излучение используют и в диагностич. целях для исследования кровеносных сосудов, фотографирования внутренних органов и др. С 1970 г. лазерный луч начали применять при хирургич. операциях в качестве «светового скальпеля» для рассечения тканей организма.

В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен).

Виды хирургических лазеров

В лазерной хирургии применяются достаточно мощные лазеры , работающие в непрерывном или импульсном режиме, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению.

Лазеры обычно именуются по типу активной среды, генерирующей лазерное излучение. Наиболее известны в лазерной хирургии неодимовый лазер и лазер на углекислом газе (или СО2-лазер).

Некоторые другие виды высокоэнергетичных лазеров, используемых в медицине, имеют, как правило, свои узкие области применения. Например, в офтальмологии для прецизионного испарения поверхности роговицы глаза применяются эксимерные лазеры.

В косметологии для устранения сосудистых и пигментных дефектов кожи используются КТР-лазеры, лазеры на красителе и на парах меди, для эпиляции - александритовые и рубиновые лазеры.

СО2 - лазер

Лазер на углекислом газе - это первый хирургический лазер, который активно используется с 1970-х годов по настоящее время.

Высокое поглощение в воде и органических соединениях (типичная глубина проникновения 0,1 мм) делает СО2-лазер подходящим для широкого спектра хирургических вмешательств, в том числе для гинекологии, оториноларингологии, общей хирургии, дерматологии, кожно-пластической и косметической хирургии.

Поверхностное воздействие лазера позволяет иссекать биоткань без глубокого ожога. Это также делает CO2-лазер не опасным для глаз, т. к. излучение не проходит сквозь роговицу и хрусталик.

Конечно, мощный направленный луч может повредить роговицу, но для защиты достаточно иметь обычные стеклянные или пластиковые очки.

Недостаток длины волны 10 мкм состоит в том, что очень трудно изготовить подходящее оптическое волокно с хорошим пропусканием. И до сих пор наилучшим решением является зеркальный шарнирный манипулятор, хотя это достаточно дорогое устройство, сложное в юстировке и чувствительное к ударам и вибрации.

Другим недостатком CO2-лазера - это его непрерывный режим работы. В хирургии для эффективного резания необходимо быстро испарять биоткань без нагрева окружающих тканей, для чего нужна высокая пиковая мощность, т. е. импульсный режим. Сегодня в CO2-лазерах для этих целей применяют так называемый "суперимпульсный" режим (superpulse), при котором лазерное излучение имеет вид пачки коротких, но в 2 - 3 раза более мощных импульсов, по сравнению со средней мощностью непрерывного лазера.

Неодимовый лазер

Неодимовый лазер - это самый распространенный тип твердотельного лазера и в промышленности, и в медицине.

Его активная среда - кристалл алюмоиттриевого граната, активированного ионами неодима Nd:YAG, - позволяет получить мощное излучение в ближнем ИК-диапазоне на длине волны 1,06 мкм практически в любом режиме работы с высоким КПД и с возможностью волоконного выхода излучения.

Поэтому вслед за CO2-лазерами в медицину пришли неодимовые как для целей хирургии, так и терапии.

Глубина проникновения такого излучения в биоткани равна 6 - 8 мм и довольно сильно зависит от ее типа. Это означает, что для достижения такого же режущего или испаряющего эффекта, как у CO2-лазера, для неодимового требуется в несколько раз более высокая мощность излучения. А во-вторых, происходит значительное повреждение подлежащих и окружающих лазерную рану тканей, что отрицательно сказывается на послеоперационном ее заживлении, вызывая различные осложнения, типичные для ожоговой реакции - рубцевание, стеноз, стриктура и т. п.

Предпочтительная сфера хирургического применения неодимового лазера - это объемная и глубокая коагуляция в урологии, гинекологии, онкологические опухоли, внутренние кровотечения и т. п. как в открытых, так и в эндоскопических операциях.

Важно помнить, что излучение неодимового лазера невидимо и опасно для глаз даже в малых дозах рассеянного излучения.

Использование в неодимовом лазере специального нелинейного кристалла КТР (калий-титан-фосфат) позволяет удваивать частоту излучаемого лазером света. Получаемый таким образом КТР-лазер, излучающий в видимой зеленой области спектра на длине волны 532 нм, обладает способностью эффективно коагулировать кровенасыщенные ткани и используется в сосудистой и косметической хирургии.

Гольмиевый лазер

Кристалл алюмоиттриевого граната, активированный ионами гольмия, - Ho:YAG, способен генерировать лазерное излучение на длине волны 2,1 мкм, которое хорошо поглощается биотканью. Глубина его проникновения в биоткань составляет около 0,4 мм, т. е. сравнима с CO2-лазером. Поэтому гольмиевый лазер обладает применительно к хирургии всеми преимуществами СО2-лазера.

Но двухмикронное излучение гольмиевого лазера в то же время хорошо проходит через кварцевое оптическое волокно, что позволяет использовать его для удобной доставки излучения к месту хирургического вмешательства. Это особенно важно, в частности, для проведения малоинвазивных эндоскопических операций.

Излучение гольмиевого лазера хорошо коагулирует сосуды размером до 0,5 мм, что вполне достаточно для большинства хирургических вмешательств. Двухмикронное излучение, к тому же, вполне безопасно для глаз.

Типичные выходные параметры гольмиевого лазера: средняя выходная мощность Вт, максимальная энергия излучения - до 6 Дж, частота повторения импульсов - до 40 Гц, длительность импульса - около 500 мкс.

Сочетание физических параметров излучения гольмиевого лазера оказалось оптимальным для целей хирургии, что позволило ему найти многочисленные применения в самых различных областях медицины.

Эрбиевый лазер

Эрбиевый (Er:YAG) лазер имеет длину волны излучения 2,94 мкм (средний ИК-диапазон). Режим работы - импульсный.

Глубина проникновения в биоткань излучения эрбиевого лазера составляет не более 0,05 мм (50 мкм), т. е. его поглощение еще в раз выше, чем у CO2-лазера, и он оказывает исключительно поверхностное воздействие.

Такие параметры практически не позволяют коагулировать биоткань.

Основные направления применения эрбиевого лазера в медицине:

Микрошлифовка кожи,

Перфорация кожи для взятия проб крови,

Испарение твердых тканей зуба,

Испарение поверхности роговицы глаза для исправления дальнозоркости.

Излучение эрбиевого лазера неопасно для глаз, как и у CO2-лазера, и для него также нет надежного и дешевого волоконного инструмента.

Диодный лазер

В настоящее время существует целая гамма диодных лазеров, имеющих широкий спектр длин волн от 0,6 до 3 мкм и параметров излучения. Основными достоинствами диодных лазеров являются высокий КПД (до 60%), миниатюрность и большой ресурс работы (более 10,000 часов).

Типичная выходная мощность одиночного диода редко превышает 1 Вт в непрерывном режиме, а энергия импульса - не более 1 - 5 мДж.

Для получения мощности, достаточной для хирургии, одиночные диоды объединяют в наборы, состоящие от 10 до 100 элементов, расположенные в виде линейки, или к каждому диоду присоединяют тонкие волокна, которые собирают в жгут. Такие композитные лазеры позволяют получать 50 Вт и более непрерывного излучения на длине волны нм, которые сегодня применяются в гинекологии, офтальмологии, косметологии и др.

Основной режим работы диодных лазеров - непрерывный, что ограничивает возможности их использования в лазерной хирургии. При попытках реализовать суперимпульсный режим работы чересчур длинные импульсы (порядка 0,1 с) на длинах волн генерации диодных лазеров в ближнем ИК-диапазоне рискуют вызвать чрезмерный нагрев и последующее ожоговое воспаление окружающих тканей.

В медицине лазеры нашли свое применение в виде лазерного скальпеля. Его использование для проведения хирургических операций определяют следующие свойства:

Он производит относительно бескровный разрез, так как одновременно с рассечением тканей он коагулирует края раны “заваривая” не слишком крупные кровеносные сосуды;

Лазерный скальпель отличается постоянством режущих свойств. Попадание на твердый предмет (например, кость) не выводит скальпель из строя. Для механического скальпеля такая ситуация стала бы фатальной;

Лазерный луч в силу своей прозрачности позволяет хирургу видеть оперируемый участок. Лезвие же обычного скальпеля, равно как и лезвие электроножа, всегда в какой-то степени загораживает от хирурга рабочее поле;

Лазерный луч рассекает ткань на расстоянии, не оказывая никакого механического воздействия на ткань;

Лазерный скальпель обеспечивает абсолютную стерильность, ведь с тканью взаимодействует только излучение;

Луч лазера действует строго локально, испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются значительно меньше, чем при использовании механического скальпеля;

Как показала клиническая практика, рана от лазерного скальпеля почти не болит и быстрее заживляется.

Практическое применение лазеров в хирургии началось в СССР в 1966 году в институте имени А. В. Вишневского. Лазерный скальпель был применен в операциях на внутренних органах грудной и брюшной полостей. В настоящее время лазерным лучом делают кожно-пластические операции, операции пищевода, желудка, кишечника, почек, печени, селезенки и других органов. Очень заманчиво проведение операций с использованием лазера на органах, содержащих большое количество кровеносных сосудов, например, на сердце, печени.

Особенно широкое применение нашли лазерные инструменты в хирургии глаза. Глаз, как известно, представляет орган, обладающий очень тонкой структурой. В хирургии глаза особенно важны точность и быстрота манипуляций. Кроме того выяснилось, что при правильном подборе частоты излучения лазера оно свободно проходит через прозрачные ткани глаза, не оказывая на них никакого действия. Это позволяет делать операции на хрусталике глаза и глазном дне, не делая никаких разрезов вообще. В настоящее время успешно проводятся операции по удалению хрусталика путём испарения его очень коротким и мощным импульсом. При этом не происходит повреждение окружающих тканей, что ускоряет процесс заживления, составляющий буквально несколько часов. В свою очередь, это значительно облегчает последующую имплантацию искусственного хрусталика. Другая успешно освоенная операция – приваривание отслоившейся сетчатки.

Лазеры довольно успешно применяются и в лечении таких распространённых сейчас заболеваний глаза как близорукость и дальнозоркость. Одной из причин этих заболеваний является изменение в силу каких-либо причин конфигурации роговицы глаза. С помощью очень точно дозированных облучений роговицы лазерным излучением можно исправить её изъяны, восстановив нормальное зрение.

Трудно переоценить значение применения лазерной терапии при лечении многочисленных онкологических заболеваний, вызванных неконтролируемым делением видоизменённых клеток. Точно фокусируя луч лазера на скоплении раковых клеток, можно полностью уничтожить эти скопления, не повреждая здоровые клетки.

Разнообразные лазерные зонды широко используются при диагностике заболеваний различных внутренних органов, особенно в тех случаях, когда применение других методов невозможно или сильно затруднено.

В лечебных целях применяется низкоэнергетическое лазерное излучение. В основе лазеротерапии лежит сочетание воздействия на организм импульсного широкополосного излучения ближнего инфракрасного диапазона совместно с постоянным магнитным полем . В основе терапевтического (лечебного) эффекта лазерного излучения с живым организмом лежат фотофизические и фотохимические реакции. На клеточном уровне в ответ на действие лазерного излучения изменяется энергетическая активность клеточных мембран, происходит активизация ядерного аппарата клеток системы ДНК – РНК – белка, а, следовательно, увеличение биоэнергетического потенциала клеток. Реакция на уровне организма в целом выражается в клинических проявлениях. Это обезболивающий, противовоспалительный и противоотечный эффекты, улучшение микроциркуляции не только в облучаемых, но и в окружающих тканях, ускорение заживления поврежденной ткани, стимуляция общих и местных факторов иммунозащиты, снижение в крови холецистита, бактериостатический эффект.

ЛАЗЕР (аббревиатура из начальных букв англ. Light Amplification by Stimulated Emission of Radiation - усиление света стимулированным излучением ; син. оптический квантовый генератор ) - техническое устройство, испускающее фокусированное в виде пучка электромагнитное излучение в диапазоне от инфракрасного до ультрафиолетового, обладающее большой энергией и биологическим действием. Л. были созданы в 1955 г. Н. Г. Басовым, А. М. Прохоровым (СССР) и Ч. Таунсом (Ch. Townes, США), удостоенными за это изобретение Нобелевской премии 1964 г.

Главными частями Л. являются рабочее тело, или активная среда, лампа накачки, зеркальный резонатор (рис. 1). Лазерное излучение может быть непрерывным и импульсным. Полупроводниковые Л. могут работать в том и другом режимах. В результате сильной световой вспышки лампы накачки электроны активного вещества переходят из спокойного состояния в возбужденное. Действуя друг на друга, они создают лавину световых фотонов. Отражаясь от резонансных экранов, эти фотоны, пробивая полупрозрачный зеркальный экран, выходят узким монохроматическим световым пучком высокой энергии.

Рабочее тело Л. может быть твердым (кристаллы искусственного рубина с добавкой хрома, некоторые соли вольфрамовой и молибденовой к-т, различные виды стекол с примесью неодима и некоторых других элементов и др.), жидкостью (пиридин, бензол, толуол, бромнафталин, нитробензол и др.), газом (смесь гелия и неона, гелия и паров кадмия, аргон, криптон, углекислый газ и др.).

Для перевода атомов рабочего тела в возбужденное состояние можно применять световое излучение, поток электронов, поток радиоактивных частиц, хим. реакцию.

Если представить активную среду как кристалл искусственного рубина с примесью хрома, параллельные торцы к-рого оформлены в виде зеркала с внутренним отражением и одно из них полупрозрачное, и этот кристалл осветить мощной вспышкой лампы накачки, то в результате такого мощного засвета или, как принято называть, оптической накачки, большее число атомов хрома перейдет в возбужденное состояние.

Возвращаясь в основное состояние, атом хрома спонтанно излучает фотон, который сталкивается с возбужденным атомом хрома, выбивая из него другой фотон. Эти фотоны, встречаясь в свою очередь с другими возбужденными атомами хрома, опять выбивают фотоны, и этот процесс лавинно нарастает. Поток фотонов, многократно отражаясь от зеркальных торцов, все увеличивается до тех пор, пока плотность энергии излучения не достигнет предельного значения, достаточного для преодоления полупрозрачного зеркала, и вырвется наружу в виде импульса монохроматического когерентного (строго направленного) излучения, длина волны к-рого 694,3 нм и длительность импульса 0,5-1,0 мсек с энергией от долей до сотен джоулей.

Оценить энергию вспышки Л. можно на следующем примере: суммарная по спектру плотность энергии на поверхности Солнца составляет 10 4 вт/см 2 , а сфокусированный луч от Л. мощностью 1 Мвт создает интенсивность излучения в фокусе до 10 13 вт/см 2 .

Монохроматичность, когерентность, малый угол расхождения луча, возможность оптической фокусировки позволяют получить высокую концентрацию энергии.

Фокусированный луч Л. может быть направлен на площадь в несколько микрон. Этим достигается колоссальная концентрация энергии и создается чрезвычайно высокая температура в объекте облучения. Лазерное излучение плавит сталь и алмаз, разрушает любой материал.

Лазерные аппараты и области их применения

Особые свойства лазерного излучения - высокая направленность, когерентность и монохроматичность - открывают практически большие возможности для его применения в различных областях пауки, техники и медицины.

Для мед. целей применяются различные Л., мощность излучения которых определяется задачами оперативного или терапевтического лечения. В зависимости от интенсивности облучения и особенностей взаимодействия его с разными тканями достигаются эффекты коагуляции, экстирпации, стимуляции и регенерации. В хирургии, онкологии и офтальмол, практике применяются Л. мощностью в десятки ватт, а для получения стимулирующего и противовоспалительного эффектов - Л. мощностью в десятки милливатт.

С помощью Л. можно одновременно передавать огромное количество телефонных переговоров, осуществлять связь как в земных условиях, так и в космосе, производить локацию небесных тел.

Малое расхождение луча Л. позволяет применять их в маркшейдерской практике, строительстве крупных инженерных сооружений, для посадки самолетов, в машиностроении. Газовые Л. находят применение для получения объемных изображений (голография). В геодезической практике широко используются различные типы лазерных светодальномеров. Л. применяются в метеорологии, для контроля загрязнения окружающей среды, в измерительной и вычислительной технике, приборостроении, для размерной обработки микроэлектронных схем, инициирования хим. реакций и др.

В лазерной технологии находят применение как твердотельные, так и газовые Л. импульсного и непрерывного действия. Для резания, сверления и сварки различных высокопрочных материалов - сталей, сплавов, алмазов, часовых камней - выпускаются лазерные установки на углекислом газе (ЛУНД-100, ТИЛУ-1, Импульс), на азоте (Сигнал-3), на рубине (ЛУЧ-1М, К-ЗМ, ЛУЧ-1 П, СУ-1), на неодимовом стекле (Квант-9, Корунд-1, СЛС-10, Кизил) и др. В большинстве процессов лазерной технологии используется термическое действие света, вызываемое его поглощением обрабатываемым материалом. Для увеличения плотности потока излучения и локализации зоны обработки применяются оптические системы. Особенности лазерной технологии следующие: высокая плотность энергии излучения в зоне обработки, дающая за короткое время необходимый термический эффект; локальность воздействующего излучения, обусловленная возможностью его фокусировки, и световые пучки предельно малого диаметра; малая зона термического влияния, обеспечиваемая кратковременным воздействием излучения; возможность ведения процесса в любой прозрачной среде, через окна технол. камер и пр.

Мощность излучения Л., применяемых для контрольно-измерительных приборов систем наведения и связи, невелика, порядка 1-80 мвт. Для экспериментальных исследований (измерение скоростей потока жидкостей, изучение кристаллов и др.) используются мощные Л., генерирующие излучение в импульсном режиме с пиковой мощностью от киловатт до гектоватт и длительностью импульса 10 -9 -10 -4 сек. Для обработки материалов (резания, сварки, прошивки отверстий и др.) применяются различные Л. с выходной мощностью от 1 до 1000 ватт и более.

Лазерные устройства в значительной мере повышают эффективность труда. Так, лазерная резка дает значительную экономию сырья, мгновенная пробивка отверстий в любых материалах облегчает труд сверловщика, лазерный метод изготовления микросхем улучшает качество продукции и т. д. Можно утверждать, что Л. стал одним из распространенных приборов, применяемых для научных, технических и мед. целей.

Механизм действия лазерного луча на биол, ткани основан на том, что энергия светового пучка резко повышает температуру на небольшом участке тела. Температура в облучаемом месте, по данным Минтона (J. P. Minton), может подняться до 394°, и поэтому патологически измененный участок мгновенно сгорает и испаряется. Тепловое воздействие на окружающие ткани при этом распространяется на очень небольшое расстояние, т. к. ширина прямого монохроматического фокусированного пучка излучения равна

0,01 мм. Под влиянием лазерного излучения происходит не только коагуляция белков живой ткани, но и взрывное ее разрушение от действия своеобразной ударной волны. Эта ударная волна образуется в результате того, что при высокой температуре тканевая жидкость мгновенно переходит в газообразное состояние. Особенности биол, действия зависят от длины волны, длительности импульсов, мощности, энергии лазерного излучения, а также от структуры и свойств облучаемых тканей. Имеют значение окраска (пигментация), толщина, плотность, степень наполнения кровью тканей, их физиол, состояние и наличие в них патол, изменений. Чем больше мощность лазерного излучения, тем глубже оно проникает и тем сильнее действует.

В экспериментальных исследованиях было изучено влияние светового излучения различного диапазона на клетки, ткани и органы (кожу, мышцы, кости, внутренние органы и др). результаты к-рого отличаются от термических и лучевых воздействий. После непосредственного воздействия лазерного излучения на ткани и органы в них возникают ограниченные очаги поражения различной площади и глубины в зависимости от характера ткани или органа. При гистол, изучении тканей и органов, подвергшихся воздействию Л., в них можно определить три зоны морфол, изменений: зону поверхностного коагуляционного некроза; зону кровоизлияния и отека; зону дистрофических и некробиотических изменений клетки.

Лазеры в медицине

Разработка импульсных Л., а также Л. непрерывного действия, способных генерировать световое излучение с большой плотностью энергии, создала условия для широкого использования Л. в медицине. К концу 70-х гг. 20 в. лазерное облучение стали применять для диагностики и лечения в различных областях медицины - хирургии (в т. ч. травматологии, кардиоваскулярной, абдоминальной хирургии, нейрохирургии и др.)> онкологии, офтальмологии, стоматологии. Следует подчеркнуть, что основоположником современных методов лазерной микрохирургии глаза является советский офтальмолог академик АМН СССР М. М. Краснов. Наметились перспективы практического использования Л. в терапии, физиотерапии и др. Спектрохимические и молекулярные исследования биол, объектов уже тесно связаны с развитием лазерной эмиссионной спектроскопии, абсорбционной и флюоресцентной спектрофотометрии с использованием перестраиваемых по частоте Л., лазерной спектроскопии комбинационного рассеяния света. Эти методы наряду с повышением чувствительности и точности измерений сокращают время выполнения анализов, что обеспечило резкое расширение объема исследований для диагностики профзаболеваний, контроля за применением медикаментозных средств, в области судебной медицины и т. п. В сочетании с волоконной оптикой лазерные методы спектроскопии можно применять для просвечивания грудной полости, исследования кровеносных сосудов, фотографирования внутренних органов в целях изучения их функц, отправлений и обнаружения опухолей.

Изучение и идентификация больших молекул (ДНК, РНК и др.) и вирусов, иммунол, исследования, изучение кинетики и биол, активности микроорганизмов, микроциркуляции в кровеносных сосудах, измерение скоростей потоков биол, жидкостей - основные области применения методов лазерной рэлеевской и допплеровской спектрометрии, высокочувствительных экспресс -методов, позволяющих производить измерения при чрезвычайно низких концентрациях исследуемых частиц. С помощью Л. производят микроспектральный анализ тканей, руководствуясь характером вещества, испарившегося под действием излучения.

Дозиметрия лазерных излучений

В связи с колебаниями мощности активного тела Л., особенно газовых (напр., гелий-неоновых), в процессе их эксплуатации, а также по требованиям техники безопасности систематически проводят дозиметрический контроль с помощью специальных дозиметров, калиброванных по стандартным эталонным измерителям мощности, в частности типа ИМО-2, и аттестованных государственной метрологической службой. Дозиметрия позволяет определять эффективные терапевтические дозы и плотность мощности, обусловливающей биол, эффективность лазерного излучения.

Лазеры в хирургии

Первой областью применения Л. в медицине стала хирургия.

Показания

Способность луча Л. рассекать ткани позволила внедрить его в хирургическую практику. Бактерицидный эффект, коагулирующие свойства «лазерного скальпеля» послужили основой для применения его при операциях на жел.-киш. тракте, паренхиматозных органах, при нейрохирургических операциях, у больных, страдающих повышенной кровоточивостью (гемофилия, лучевая болезнь и др.).

С успехом применяются гелий-неоновые и углекислотные Л. при некоторых хирургических заболеваниях и повреждениях: инфицированных, длительно не заживающих ранах и язвах, ожогах, облитерирующем эндартериите, деформирующем артрозе, переломах, аутотрансплантации кожи на ожоговые поверхности, абсцессах и флегмонах мягких тканей и др. Лазерные установки «Скальпель» и «Пульсар» предназначены для резки костей и мягких тканей. Установлено, что излучение Л. стимулирует процессы регенерации, изменяя длительность фаз течения раневого процесса. Напр., после вскрытия гнойников и обработки стенок полостей Л. значительно сокращается время заживления ран по сравнению с другими методами лечения за счет уменьшения инфицированности раневой поверхности, ускорения очищения раны от гнойно-некротических масс и образования грануляций и эпителизации. Гистол, и цитол, исследования показали усиление репаративных процессов вследствие увеличения синтеза РНК и ДНК в цитоплазме фибробластов и содержания гликогена в цитоплазме нейтрофильных лейкоцитов и макрофагах, уменьшение количества микроорганизмов и числа микробных ассоциаций в раневом отделяемом, снижение биол, активности патогенного стафилококка.

Методика

Очаг поражения (рана, язва, ожоговая поверхность и др.) условно разделяют на поля. Каждое поле ежедневно или через 1 - 2 дня облучают Л. малой мощности (10-20 мвт) в течение 5-10 мин. Курс лечения 15-25 сеансов. При необходимости через 25-30 дней можно провести повторный курс; обычно их не повторяют более 3 раз.

Лазеры в онкологии

В 1963- 1965 гг. в СССР и СЕТА были проведены опыты на животных, показавшие, что излучением Л. можно разрушать перевиваемые опухоли. В 1969 г. в Ин-те проблем онкологии АН УССР (Киев) было открыто первое отделение лазерной терапии онкол, профиля, оборудованное специальной установкой, с помощью к-рой лечили больных с опухолями кожи (рис. 2). В дальнейшем делались попытки распространения лазерной терапии опухолей и другой локализации.

Показания

Л. применяют при лечении кожных доброкачественных и злокачественных опухолей, а также некоторых предопухолевых состояний женских половых органов. Воздействие на глубоко расположенные опухоли требует обычно их обнажения, т. к. при прохождении сквозь ткани лазерное излучение значительно ослабляется. Благодаря более интенсивному поглощению света пигментированные опухоли - меланомы, гемангиомы, пигментные невусы и др.- легче поддаются лазерной терапии, чем непигментированные (рис. 3). Разрабатываются методы применения Л. для лечения опухолей других органов (гортани, гениталий, молочной железы и др.).

Противопоказанием к применению Л. являются опухоли, расположенные около глаз (из-за опасности повреждения органа зрения) .

Методика

Существует два метода применения Л.: облучение опухоли с целью некротизации и иссечение ее. При проведении лечения с целью вызвать некроз опухоли производят: 1) обработку объекта малыми дозами излучений, иод действием которых участок опухоли разрушается, а остальная ее часть постепенно некротизируется; 2) облучение большими дозами (от 300 до 800 дж/см 2); 3) множественное облучение, в результате к-рого происходит тотальная гибель опухоли. При лечении методом некротизации облучение кожных опухолей начинают с периферии, постепенно продвигаясь к центру, обычно захватывая пограничную полосу нормальных тканей шириной 1,0-1,5 см. Необходимо облучение всей массы опухоли, т. к. необлученные участки являются источником возобновления роста. Величина энергии излучения определяется типом Л. (импульсный или непрерывного действия), спектральной областью и другими параметрами излучения, а также особенностями опухоли (пигментацией, размерами, плотностью и др.). При лечении непигментированных опухолей можно вводить в них окрашенные соединения, усиливающие поглощение излучения и разрушение опухоли. Вследствие некротизации ткани на месте кожной опухоли образуется черная или темно-серая корка, к-рая отпадает через 2-6 нед. (рис. 4).

При иссечении опухоли с помощью лазера достигается хороший гемостатический и асептический эффект. Метод находится в стадии разработки.

Исходы

Л. может быть разрушена любая доступная облучению опухоль. При этом не возникает побочных эффектов, в частности в кроветворной системе, что дает возможность лечить больных пожилого возраста, ослабленных пациентов и детей раннего возраста. При пигментированных опухолях избирательно разрушаются только опухолевые клетки, чем обеспечивается щадящее воздействие и благоприятные в косметическом отношении результаты. Излучение можно точно сфокусировать и, следовательно, вмешательство строго локализовать. Гемостатическое действие лазерного излучения дает возможность ограничить кровопотери). Успешный результат при лечении рака кожи, по 5-летним наблюдениям, отмечен в 97% случаев (рис. 5).

Осложнения : обугливание

тканей при их рассечении.

Лазеры в офтальмологии

Традиционные импульсные немодулированные Л. (обычно на рубине) использовались до 70-х гг. для прижиганий на глазном дне, напр, с целью образования хориоретинальной спайки при лечении и профилактике отслойки сетчатки, при небольших опухолях и т. д. На этом этапе область их применения была примерно той же, что у фотокоагуляторов, использующих обычный (немонохроматический, некогерентный) луч света.

В 70-х гг. в офтальмологии были с успехом применены новые типы Л. (цветн. рис. 1 и 2): газовые Л. постоянного действия, модулированные Л. с «гигантскими» импульсами («холодные» Л.), Л. на красителях и ряд других. Это значительно расширило область клин, применения Л. на глазу - стало возможным активное вмешательство на внутренних оболочках глаза без вскрытия его полости.

Большую практическую значимость представляют следующие области клин, лазерной офтальмологии.

1. Известно, что сосудистые заболевания глазного дна выходят (а в ряде стран уже вышли) на первое место среди причин неизлечимой слепоты. Среди них широкое распространение имеет диабетическая ретинопатия, к-рая развивается почти у всех больных диабетом с продолжительностью заболевания 17- 20 лет.

Больные обычно теряют зрение в результате повторных внутриглазных кровоизлияний из новообразованных патологически измененных сосудов. С помощью лазерного пучка (наилучшие результаты дают газовые, напр, аргоновые, Л. постоянного действия) коагуляции подвергаются как измененные сосуды с участками транссудации, так и зоны новообразованных сосудов, особенно подверженных разрыву. Успешный результат, сохраняющийся в течение ряда лет, отмечается примерно у 50% больных. Обычно коагулируют и непораженные участки сетчатки, которые не имеют первостепенного функц, значения (панретинальная коагуляция).

2. Тромбозы ретинальных сосудов (особенно вен) также стали доступны прямому леч. воздействию только с использованием Л. Лазеркоагуляция способствует активизации кровообращения и оксигенации в сетчатке, уменьшению или ликвидации трофического отека сетчатки, который без леч. воздействия обычно завершается тяжелыми необратимыми изменениями (цветн. рис. 7-9).

3. Дегенерация сетчатки, особенно в стадии транссудации, в ряде случаев успешно поддается лазертерапии, к-рая представляет практически единственный путь активного вмешательства в этот патол, процесс.

4. Очаговые воспалительные процессы на глазном дне, перифлебиты, ограниченные проявления ангиоматоза в ряде случаев также успешно излечиваются с помощью лазертерапии.

(см.) позволил осуществить нехирургическую иридэктомии» и тем самым превратить хирургическую операцию в амбулаторную процедуру. Совр, методики лазерной иридэктомии, в частности разработанный в СССР М. М. Красновым с соавт, метод двухэтапной иридэктомии с помощью двух Л., позволяют достигать иридэктомии почти у 100% больных (рис. 6); ее гипотензивный эффект (как и при хирургическом вмешательстве) в значительной мере зависит от своевременности процедуры (в поздних стадиях в углу передней камеры развиваются спайки - так наз. гониосинехии, требующие дополнительных мер воздействия). При так наз. открытоугольной глаукоме с помощью метода лазергониопунктуры удается избежать оперативного лечения примерно у 60% больных (рис. 7 и цветн. рис. 3); для этого в Советском Союзе впервые в мире разработана принципиальная техника лазергониопунктуры с помощью модулированных импульсных («холодных») Л. Возможна также лазеркоагуляция цилиарного тела для снижения внутриглазного давления за счет сокращения продукции внутриглазной жидкости. Доказано благоприятное действие Л. на течение вирусных процессов в роговице, особенно на некоторые формы герпетического кератита, лечение которых представляло трудную проблему.

С появлением новых типов Л. и новых методик его применения на глазу возможности лазерной терапии и лазерной микрохирургии в офтальмологии постоянно расширяются. В связи со сравнительной новизной лазерных методов характер отдаленных результатов лечения ряда заболеваний (диабетические поражения глаз, воспалительные и дистрофические процессы в сетчатке и др.) нуждается в дальнейшем уточнении.

Из дополнительных материалов

Лазер в лечении глаукомы. Целью лазерного воздействия при глаукоме (см.) является нормализация внутриглазного давления (см.). Сущность и механизм гипотензивного действия лазерного излучения могут быть различными в зависимости от формы глаукомы и особенностей используемого лазерного источника. Наибольшее распространение в офтальмол. практике получили аргоновые лазеры непрерывного действия и импульсные лазерные источники на рубине и иттрий-алюминие-вом гранате. В лазерном источнике на рубине активной средой является кристалл рубина, обогащенный трехвалентными ионами хрома (А1203:

Сг3+), а в лазерном источнике на иттрий-алюминиевом гранате -

кристалл иттрий-алюминиевого граната, активированный трехвалентными ионами неодима (Y3A15012:

При закрытоугольной глаукоме с помощью лазера формируют сквозное отверстие в радужке пораженного глаза (лазерная иридото-мия), в результате чего улучшается отток внутриглазной жидкости.

Показанием к лазерной иридото-мии служат периодически повторяющиеся острые приступы повышения внутриглазного давления с нормальным его уровнем в межприступном периоде, а также постоянное повышение внутриглазного давления при отсутствии синехиальных изменений в углу передней камеры глаза; применяют три разновидности лазерной иридотомии: послойную, одномоментную и комбинированную лазерную иридотомию. При всех трех методах лазерного воздействия выбирают наиболее истонченный участок в строме периферического отдела радужки (см.).

Послойную лазерную иридотомию выполняют с помощью аргонового лазера. При этом последовательно наносят импульсы в одну точку, что приводит к постепенному образованию углубления в строме радужки, а затем - сквозного отверстия. В процессе лечения проводят от 1 до

4 сеансов. Для выполнения одномоментной лазерной иридотомии используют короткоимпульсный лазер. При однократном нанесении сфокусированного лазерного импульса на поверхность радужки образуется сквозное отверстие (см. Колобома). Комбинированная лазерная иридо-томия сочетает в себе элементы послойной и одномоментной иридотомии и выполняется в два этапа. На первом этапе производят коагуляцию радужки излучением аргонового лазера с целью формирования в течение последующих 2-3 нед. участка атрофии и истончения стромы. На втором этапе осуществляют од-ноимпульсную перфорацию радужки излучением короткоимпульсного лазера.

При открытоугольной глаукоме с помощью лазера восстанавливают проницаемость пораженной дренажной системы; при этом используют лазерную гониопунктуру (формируют искусственные отверстия в трабекулах и внутренней стенке шлем-мова канала) и лазерную трабеку-лопластику - коагуляцию трабекул или передней части цилиарного (ресничного) тела, что приводит к натяжению трабекул и расширению меж-трабекулярных пространств. Лечение лазером показано в случаях неэффективности медикаментозной терапии или непереносимости применяемых лекарственных средств, при прогрессировании заболевания.

При лазерной гониопунктуре в качестве лазерного источника используют короткоимпульсный лазер. Последовательно наносят 15-20 лазерных импульсов в один ряд, сфокусированных на поверхности трабекул в проекции шлеммова канала; вмешательство осуществляют в нижней половине угла передней камеры глаза.

При лазерной трабекулопластике в качестве лазерного источника используют аргоновый лазер. По всей окружности шлеммова канала наносят от 80 до 120 импульсов в виде точечной линии на границе между шлеммовым каналом и передним пограничным кольцом Швальбе (см. Гониоскопия) или двумя параллельными рядами по передней части ресничного тела (лазерный трабекуло-спазис).

Осложнениями лазерного лечения глаукомы могут быть слабовыра-женное кровотечение из разрушенных лазерным импульсом сосудов радужки; длительный вялотекущий ирит (см. Иридоциклит) без явных клин, проявлений, с образованием в поздние сроки плоскостных задних синехий; реактивное повышение внутриглазного давления, развивающееся после незавершенной лазерной иридотомии; в редких случаях наблюдается повреждение эндотелия роговицы (см.) лазерным излучением при нечеткой фокусировке лазерного пучка на поверхности радужки. Соблюдение необходимых профилактических мер (правильный выбор места воздействия и правильное техническое выполнение метода) делает частоту этих осложнений минимальной.

Прогноз при лазерном лечении глаукомы благоприятный особенно в начальной стадии заболевания: в большинстве случаев наблюдается нормализация внутриглазного давления и стабилизация зрительных функций.

См. также Глаукома.

Лазерная фотокоагуляция в лечении диабетической ретинопатии. Консервативные методы лечения диабетической ретинопатии (см.) малоэффективны. В лечении этого заболевания в последнее десятилетие активно используют лазер. Лазерная фотокоагуляция обширных участков ишемизированной сетчатки приводит к ее разрушению и прекращению роста новообразованных сосудов.

Лазерная фотокоагуляция у больных с диабетической ретинопатией показана при появлении первых признаков ишемии сетчатки, выявляемых методом флюоресцентной ангиографии (см.): патол. проницае

мость ретинальных капилляров; появление неперфузируемых участков сетчатки, расположенных за пределами области желтого пятна; впервые обнаруженные признаки неоваскуля-ризации на диске зрительного нерва и по ходу магистральных ветвей центральных артерий и вены сетчатки. В более поздних стадиях процесса, характеризующихся выраженной глиальной пролиферацией, лазерная фотокоагуляция противопоказана. Для лечения диабетической ретинопатии наиболее распространенным лазерным источником является аргоновый лазерный фотокоагулятор. Оптимальной методикой считается панретинальная лазерная фотокоагуляция, при к-рой коагуляции подвергают большую площадь поверхности сетчатки - от центральных отделов до экватора, а при необходимости и крайней периферии. Интактными сохраняют лишь макулярную область с папилломакуляр-ным пучком и диск зрительного нерва. Ихмпульсы наносят с интервалами, равными половине диаметра лазерного пятна. Нормальные сосуды сетчатки не коагулируют. По мере удаления от центра глазного дна к периферии диаметр фокального пятна лазерного луча увеличивают. Панретинальную фотокоагуляцию выполняют в 3-4 сеанса с промежутками между ними от 2 до 7 дней. Общее число лазерных коагуляций для одного глаза может достигать 2000-2500. Возможно также использование прямого коагулирующего лазерного воздействия на новообразованные сосуды - прямая фокальная лазерная фотокоагуляция. Пучки новообразованных сосудов коагулируют путем нанесения на них большого числа импульсов до полного прекращения в них кровотока.

Нередко сочетают панретинальную и фокальную лазерную фотокоагуляцию.

Наиболее распространенным осложнением лазерного лечения диабетической ретинопатии (до 10% случаев) являются кровоизлияния в сетчатку (см.) и стекловидное тело (см.) - частичный или полный гемофталъм (см.), отягощающие течение диабетической ретинопатии, снижающие остроту зрения и затрудняющие дальнейшее использование лазерной фотокоагуляции. Возможен реактивный отек макулярной области сетчатки или развитие острой ишемии ее, сморщивание стекловидного тела (вследствие избыточного его нагревания), приводящие к необратимому снижению остроты зрения.

Профилактика описанных осложнений лазерной фотокоагуляции заключается в показаний, тщательном соблюдении техники метода. При выполнении этих условий лазерная фотокоагуляция более чем у половины больных диабетической ретинопатией приводит к стойкому улучшению.

См. также Диабет сахарный.

БиблиогрАкопян В. С. Лазерные методы лечения первичных глауком, Вестн. офтальм., № 6, с. 19, 1982; Ако

пян В. С. и Дроздова H. М. Лечебное и профилактическое значение лазерной иридэктомии в клинике первичной ангулярной глаукомы, там же, № 1, с. 10, 1977; они же, Одноимпульсная лазерная иридэктомия, там же, № 4 с. 15, 1981; Краснов М. М. Лазерная микрохирургия глаза, там же, № 1, с. 3, 1973; Краснов М. М. Лазеропунктура угла передней камеры при глаукоме, там же, № 3, с. 27, 1972; о н ж е, Микрохирургия глауком, М., 1980;

Краснов М. М. и др. Лазерное лечение первичной открытоугольной глаукомы, Вестн. офтальм., № 5, с. 18, 1982; Bass М. S., Perkins E. S. a. Wheeler С. B. Experimental results with a pulsed dye laser, Advanc. Ophthal., v. 34, p. 164, 1977; Bass M. S. a. o. Single treatment laser iridotomy, Brit, J. Ophthal., v. 63, p. 29, 1979; Diabetic retinopathy study. Sixth and seventh reports from the diabetic retinopathy study,

Invest. Ophthal. Vis. Sci., v. 21, N 1, pt 2, 1981; The diabetic retinopathy study research group, Photocoagulation treatment of proLiferative diabetic retinopathy, Ophthalmology, v. 85, p. 82, 1978; The

diabetic retinopathy study research group, Preliminary report on effects of photocoagulation therapy, Amer. J. Ophthal., v. 81, p. 383, 1976; Hager H. Besondere

mikrochirurgische Eingriffe, 2. Etst Er-fahrungen mitdem Argon-Laser-Gerat 800, Klin. МЫ. Augenheilk., Bd 162, S. 437, 1973; L’Esperance F. A. a. James W. A. Diabetic retinopathy, clinical evaluation and management, St Louis, 1981; Perkins E. S. Laser iridotomy, Brit. med. J., v. 1, p. 580, 1970; Perkins E. S. a. Brown N. W. A. Iridotomy with a ruby laser, Brit. J. Ophthal., v. 57, p. 487, 1973; Wise J. B, Glaucoma treatment by trabecular tightening with argon laser, Int. ophthal. Clin., v. 21, p. 69, 1981; W о r-

the n D. M. a. Wickham M. G. Argon laser trabeculotomy, Trans. Amer. Acad. Ophthal. Otolaryng., v. 78, p. 371,

1974. В. С. Акопян.

Лазеры в стоматологии

Экспериментально-теоретическим обоснованием применения Л. в стоматологии явились исследования особенностей механизма воздействия излучений различных типов Л. на зубы (см. Зубы, повреждения), челюсти и слизистую оболочку полости рта.

Диагностика заболеваний зубов и челюстей с помощью Л. имеет значительные преимущества по сравнению с рентгенографией. Л. используют для трансиллюминации (просвечивания) с помощью гибких стекловолоконных световодов в целях обнаружения микротрещин эмали зубов (в т. ч. на проксимальных труднодоступных поверхностях коронок зубов), поддесневого зубного камня, определения состояния пульпы зуба (дентикли, мумификация, некроз и т. п.), состояния корней молочных зубов, зачатков коронок и корней постоянных зубов у детей. Лазерные источники света применяют в фото-плетизмографии (см. Плетизмография), для диагностики заболеваний пульпы зуба, пародонта и челюстей. Лазерную голографию выполняют для диагностики и оценки эффективности лечения врожденных и приобретенных деформаций лица и в функц, диагностике стоматол, заболеваний, для расшифровки и анализа реограмм, полярограмм, фотоплетизмограмм, миограмм и т. п.

Профилактику начальных стадий кариеса и некариозных поражений зубов (эрозии, клиновидные дефекты и т. п.) осуществляют путем «глазурирования» поврежденных участков эмали зуба гранатовыми, углекислотными и другими Л., работающими в режиме модуляции добротности излучения (низкая мощность в импульсе и высокая частота импульсов), позволяющей избежать неблагоприятного воздействия высоких температур на пульпу зуба, образования микротрещин эмали и дентина. Эти же Л. используют для проваривания швов между пломбой и эмалью зуба, что предупреждает рецидивы кариеса, а ультрафиолетовые Л.- для отвердения сиалантов (адгезивов) при покрытии фиссур жевательных зубов у детей.

При вмешательствах на челюстях (резка кости, фенестрация, компактостеотомия, наложение костных швов на отломки челюстей при их переломах, остеопластике и т. п.) применяют гранатовые, углекислотные и другие Л. С помощью этих же Л. препарируют зубы, осуществляют экстренное вскрытие полости зуба при пульпитах, операции резекции верхушки корня зуба при периодонтитах, цистотомии и цистэктомии, гайморотомии, альвеолотомии, резекции челюстей по поводу костных, напр, адамантиномы, одонтомы, и других опухолей челюстей. Для операций на мягких тканях, в т. ч. при пластике красной каймы губ и кожи лица, при оперативном лечении заболеваний слюнных желез, гемангиом и других опухолей челюстно-лицевой области используют лазерный «скальпель».

Наиболее широкое распространение в стоматологии получили высокоэффективные гелий-неоновые Л. для лечения воспалительных заболеваний слизистой оболочки полости рта (герпетического и хрон, рецидивирующего афтозного стоматита, герпеса губ, глоссалгии, глоссита, красного плоского лишая, многоформной экссудативной эритемы, синдрома Мелькерссона - Розенталя и др.). пародонтоза. Отмечено, что лазерное излучение сопровождается стимуляцией заживления послеоперационных ран, ожогов слизистой оболочки полости рта и кожи лица, трофических язв полости рта и т. п.

Осложнения . Лазерное излучение при неправильном и неосторожном применении его может принести большой вред и больному, и медперсоналу - вызвать кровоизлияние из сосудов, привести к ожогу глаз, некрозу, поражению костей, сосудов, паренхиматозных органов, крови и эндокринных желез. Профилактика осложнений во многом зависит от правильного владения методикой лечения, отбора больных и оптимального варианта техники лечения.

Гигиена труда при работе с лазерами

Гигиеническая характеристика производственных факторов , сопровождающих работу лазерных установок.

Клинико-гигиенические и экспериментальные исследования показали, что лазерное излучение относится к числу биологически активных физ. факторов и может представить опасность для человека. Это обстоятельство определяет необходимость разработки мероприятий по гигиене труда и технике безопасности при работе с лазерными установками и организации текущего и предупредительного сан. надзора за их внедрением и эксплуатацией.

В механизме биол, действия Л. с непрерывным излучением на первое место выступает термический эффект. По мере укорочения импульса и повышения мощности излучения возрастает значение механического эффекта. Экспериментальные исследования, касающиеся механизма действия, показали, что биол, эффект зависит от длины волны излучения, энергии, длительности импульса, частоты следования импульсов, характера излучения (прямое, зеркально или диффузно отраженное), а также от анатомо-физиол, особенностей облучаемого объекта.

При действии лазерных излучений сравнительно большой интенсивности наряду с морфол, изменениями тканей непосредственно в месте облучения возникают разнообразные функц, сдвиги рефлекторного характера. Установлено также, что у лиц, обслуживающих лазерные установки, при воздействии лазерных излучений небольшой интенсивности развиваются функц, изменения в ц. н. с., сердечно-сосудистой, эндокринной системах, в зрительном анализаторе. Экспериментальные данные и наблюдения на людях свидетельствуют о том, что функц, сдвиги при этом могут носить выраженный характер и приводить к нарушению здоровья. Поэтому гиг. мероприятия должны учитывать возможность не только повреждающего действия лазерной энергии, но и исходить из того, что этот фактор является неадекватным раздражителем для организма даже при небольших интенсивностях. Как показали работы И. Р. Петрова, А. И. Семенова и др., биол, эффект от воздействия лазерного излучения может усиливаться при повторных воздействиях и при комбинации с другими факторами производственной среды.

Непосредственный контакт медперсонала с Л. является периодическим и составляет от 3 до 40 час. в неделю. При выполнении дополнительных экспериментальных работ время работы с Л. может возрастать вдвое. Инженеры и техники, занимающиеся настройкой и юстировкой Л., могут подвергаться непосредственному действию прямого лазерного излучения. Врачи и медсестры подвергаются воздействию отраженного от тканей излучения. Уровни излучения на рабочих местах медперсонала могут составлять 4*10 -4 -1*10 -5 вт/см 2 и зависят от отражательных способностей облучаемых тканей.

При применении гелий-неоновых Л. с выходной мощностью 40- 50 мет плотность потока мощности на рабочих местах персонала может составлять 1,5*10 -4 -2,2*10 -4 вт/см 2 . При выходной мощности лазеров 10-25 мет плотность потока мощности снижается на 2-3 порядка. При изготовлении алмазных волок и пробивке отверстий в часовых камнях с помощью неодимовых Л. с энергией в импульсе до 8-10 дж плотность потока энергии на уровне глаз рабочих составляет 3*10 -4 - 3*10 -5 дж/см 2 и 5*10 -5 -2*10 -6 дж/см 2 . Высокие плотности энергии диффузно отраженного излучения могут создаваться на рабочих местах при применении мощных углекислотных Л. для резки стального листа, раскроя тканей, кожи и пр.

Помимо возможного неблагоприятного действия прямого, зеркально или диффузно отраженного лазерного излучения, вредное влияние на функцию зрения работающих может оказывать световая энергия от импульсных ламп накачки, достигающая в ряде случаев 20 кдж. При этом яркость вспышки ксеноновой лампы составляет ок. 4*10 8 нт (кд/м 2) при длительности импульса 1 - 90 мсек. Воздействие излучения ламп накачки возможно при их раз-экранировании или при недостаточной экранировке, гл. обр. при испытании режима работы импульсных ламп. Наиболее опасными являются случаи самопроизвольного разряда разэкранированных ламп, т. к. при этом персонал не успевает принять предохранительных мер. Одновременно возможно не только нарушение зрительной адаптации, сохраняющееся в течение нескольких минут, но и органические поражения различных отделов глаза. Субъективно разряд разэкранированной лампы воспринимается как «непереносимая слепимость». Спектр излучения импульсных ламп содержит также длинноволновые УФ-лучи, которые могут действовать на персонал только при работе с открытыми или недостаточно экранированными импульсными лампами, вызывая дополнительную, специфическую, реакцию глаза.

Необходимо также уделять внимание ряду неспецифических факторов, сопутствующих работе с лазером. В связи с тем, что наибольшую опасность лазерное излучение представляет для глаз, особое внимание следует обращать на освещенность рабочих мест и помещений. Характер работы с Л., как правило, требует большого зрительного напряжения. Кроме того, в условиях низкой освещенности биол, эффект от воздействия лазерного излучения на сетчатку усиливается, т. к. при этом площадь зрачка глаза и чувствительность сетчатки будут существенно возрастать. Все это диктует необходимость создания достаточно высоких уровней освещения производственных помещений при работе с Л.

Работа лазерных установок может сопровождаться шумом. На фоне стабильного шума, достигающего 70-80 дб, имеют место звуковые импульсы в виде хлопков или щелчков за счет воздействия лазерного луча на обрабатываемый материал или за счет работы механических затворов, лимитирующих длительность импульса излучения. В течение рабочего дня количество хлопков или щелчков может достигать многих сотен и даже тысяч, а уровни громкости 100-120 дб. Разряды импульсных ламп накачки, а также, возможно, и процесс взаимодействия лазерного луча с обрабатываемым материалом (плазменный факел) сопровождаются образованием озона, содержание к-рого может варьировать в широких пределах.

Клинические проявления общего воздействия лучей лазера. В проблеме обеспечения безопасных условий труда с Л. особое место занимает орган зрения. Прозрачные среды глаза свободно пропускают излучения оптического диапазона, включающего видимую часть спектра и ближнюю область инфракрасного излучения (0,4-1,4 мкм), и фокусируют их на глазном дне, вследствие чего плотность энергии на нем возрастает во много раз. Тяжесть повреждения сетчатки и сосудистой оболочки зависит от параметров излучения. Выраженность патоморфол. изменений и клин, картина расстройств функции зрения может быть различной - от незначительных функц, изменений, выявляемых инструментально, до полной потери зрения. Наиболее типичным повреждением являются хориоретинальные ожоги. Патол, изменения в передних отделах глаза могут возникать при более значительных уровнях энергии лазерного излучения. Появление подобной патологии при применении Л. в технологии и в медицине практически исключается. Однако в связи с ростом мощности Л. и освоением новых диапазонов излучений (ультрафиолетового, инфракрасного) вероятность повреждения передних отделов глаза возрастает.

Ожоги кожи могут возникать при воздействии больших уровней энергии лазерного излучения, порядка нескольких дж/см2. Имеющиеся данные свидетельствуют о том, что при воздействии на кожу лазерного излучения небольшой интенсивности в организме возникают общие функц, и биохим, изменения.

При случайном облучении глаз и кожи лазерной энергией большой плотности пострадавший должен немедленно обратиться к врачу для диагностики поражения и оказания медпомощи. Принципы оказания первой помощи в этих случаях такие же, как и при ожогах глаз и кожи другой этиологии (см. Глаз, ожоги; Ожоги).

Профилактические мероприятия против поражения лучами лазера

Защитные и гиг. мероприятия для профилактики неблагоприятного действия излучений Л. и других сопутствующих факторов должны включать мероприятия коллективного характера: организационные, инженерно-технические. планировочные, санитарно-гигиенические, а также предусматривать индивидуальные средства защиты.

Обязательным является требование оценки перед началом эксплуатации лазерной установки основных неблагоприятных факторов и особенностей распространения лазерного излучения (как прямого, так и отраженного). Инструментальным измерением (в крайнем случае расчетным путем) определяют вероятные направления и участки, на которых возможны опасные для организма (превышают ПДУ) уровни излучения.

Для обеспечения безопасных условий труда, помимо строгого соблюдения коллективных мероприятий, рекомендуется пользование средствами индивидуальной защиты - очками, щитками, масками, обладающими спектрально-селективной прозрачностью, и специальной защитной одеждой. Примером отечественных защитных очков от лазерных излучений в области спектра с длиной волны 0,63-1,5 мкм являются очки, изготовленные из сине-зеленого стекла СЗС-22, обеспечивающие защиту глаз от излучений рубинового и неодимового Л. При работе с мощными Л. более эффективны защитные щитки и маски, на руки надеваются перчатки из замши или кожи. Рекомендуется ношение передников и халатов различных цветов. Выбор средств защиты должен производиться индивидуально в каждом конкретном случае квалифицированными специалистами.

Медицинское наблюдение за работающими с лазером. Работы, связанные с обслуживанием лазерных установок, включены в списки работ с вредными условиями труда, а работающие подлежат предварительным и периодическим (один раз в год) медосмотрам. В осмотрах обязательно участие окулиста, терапевта, невропатолога. При исследовании органа зрения применяют щелевую лампу.

Помимо врачебного обследования, проводят клин, анализ крови с определением гемоглобина, эритроцитов, ретикулоцитов, тромбоцитов, лейкоцитов и РОЭ.

Библиография: Александров М. Т. Применение лазеров в экспериментальной и клинической стоматологии, Мед. реферат. журн., разд. 12 - Стоматология, № 1, с. 7, 1978, библиогр.; Гамалея Н. Ф. Лазеры в эксперименте и клинике, М., 1972, библиогр.; КавецкийР. Е. и др. Лазеры в биологии и медицине, Киев, 1969; К о р ы т н ы й Д. Л. Лазерная терапия и ее применение в стоматологии, Алма-Ата, 1979; Краснов М. М. Лазерная микрохирургия глаза, Вестн, офтальм., №1, с. 3, 1973, библиогр.; Лазарев И. Р. Лазеры в онкологии, Киев, 1977, библиогр.; Осипов Г. И. и Пятин М. М. Повреждение глаза лучом лазера, Вестн, офтальм., № 1, с. 50, 1978; П л e т н e в С. Д. и др. Газовые лазеры в экспериментальной и клинической онкологии, М., 1978; П р о-хончуков А. А. Достижения квантовой электроники в экспериментальной и клинической стоматологии, Стоматология, т. 56, № 5, с. 21, 1977, библиогр.; Семенов А. И. Влияние излучений лазеров на организм и меры профилактики, Гиг. труда и проф. заболев., № 8, с. 1, 1976; Средства и методы квантовой электроники в медицине, под ред. Р. И. Утямы-шева, с. 254, Саратов, 1976; Хромов Б. М. Лазеры в экспериментальной хирургии, Л., 1973, библиогр.; Хромов Б.М. и др. Лазерная терапия хирургических заболеваний, Вестн, хир., № 2, с. 31, 1979; L’Esperance F. A. Ocular photocoagulation, a stereoscopic atlas, St Louis, 1975; Laser applications in medicine and biology, ed. by M. L. Wolbarsht, v

В. А. Поляков; В. И. Белькевич (техн.), H. Ф. Гамалея (онк.), М. М. Краснов (офт.), Ю. П. Пальцев (гиг), А. А. Прохон-чуков (стом.), В. И. Стручков (хир.).

Слово LASER (Light Amplifacation by the Stimulated Emission ) с английского переводится как Усиление Света путем Стимулирования Излучения . Само действие лазера было описано еще Энштейном в далеком 1917 году, но первый работающий лазер был построен лишь спустя 43 года Теодором Мейманом, который работал в компании Hugрes Aircraft. Для получения миллисекундных импульсов лазерного излучения он использовал кристалл искусственного рубина как активную среду. Длина волны того лазера была 694 нм. Через некоторое время был испробован уже лазер с длиной волны в 1060 нм, что является ближней ИК-областью спектра. В качестве активной среды в этом лазере выступали стеклянные стержни, легированные неодимом.

Но практического применения в то время лазер не имел. Ведущие специалисты-физики искали ему предназначение в различных сферах деятельности человека. Первые экспериментальные опыты с лазером в медицине были не совсем успешные. Лазерное излучение, на тех волнах довольно плохо поглощалось, точно контролировать мощность еще не было возможности. Однако в 60-х годах лазер на красном рубине хорошо себя показал в офтальмологии.

История применения лазеров в медицине

В 1964 году был разработан и опробован аргоновый ионный лазер. Это был лазер непрерывного излучения с сине-зеленой областью спектра и длиной волны в 488 нм. Это газовый лазер и контролировать мощность его было легче. Гемоглобин хорошо поглощал его излучение. Спустя короткое время стали появляться лазерные системы на основе аргонового лазера, которые помогали в лечении заболеваний сетчатки глаза.

В том же 64 году в лаборатории Bell был разработан лазер на алюмоитриевом гранате, легированным неодимом () и. СО2- это газовый лазер, у которого излучение имеет непрерывный характер, с длиной волны 1060 нм. Вода очень хорошо поглощает его излучение. А так как мягкие ткани у человека в основном состоят из воды, то лазер СО2 стал хорошей альтернативой обычному скальпелю. При использовании этого лазера для разрезания тканей сводится к минимуму кровопотеря. В 70-х годах углекислотные лазеры нашли широкое применение в госпиталях при институтах в США. Сфера применения в то время для лазерных скальпелей: гинекология и отоларингология.

1969 год стал годом разработки первого импульсного лазера на красителях, а уже в 1975 году появился первый эксимерный лазер. Начиная с этого времени лазер стал активно использоваться и внедряться в различные сферы деятельности.

Широкое распространение лазеры в медицине начали получать в 80-х годах в больницах и клиниках США. В большинстве своем тогда использовались углекислотные и аргоновые лазеры и применялись они в хирургии и офтальмологии. В недостатки лазеров того времени можно записать то, что у них было постоянное непрерывное излучение, которое исключало возможность более точной работы, что приводило к тепловым поражениям тканей вокруг обрабатываемой зоны. Успешное применение лазерных технологий в то время требовало колоссального опыта работы.

Следующим шагом в разработке лазерных технологий для медицины стало изобретение импульсного лазера. Такой лазер позволял воздействовать исключительно на проблемную зону, без повреждения окружающих тканей. И в 80-х годах появились первые. Это стало началом применения лазеров в косметологии. Такие лазерные системы могли удалять капиллярные гемангиомы и родимые пятна. Чуть позже появились лазеры способные. Это были лазеры с модуляцией добротности (Q-switched lser).

Начало 90-х годов были разработаны и внедрены технологии сканирования. Точность лазерной обработки теперь контролировалась компьютером и появилась возможность проводить лазерную шлифовку кожи (), что значительно подняло популярность и.

Сегодня область применения лазеров в медицине очень широкая. Это хирургия, офтальмология, стоматология, нейрохирургия, косметология, урология, гинекология, кардиология и т.д. Вы можете себе представить, что когда то лазер лишь был неплохой альтернативой скальпелю, а сегодня с его помощью можно удалять раковые клетки, производить очень точные операции на различных органах, диагностировать серьезные заболевания на самых ранних стадиях, такие как рак. Сейчас лазерные технологии в медицине идут в сторону развития комбинированных методов лечения, когда на ряду с лазерной терапией применяют физиотерапию,медикаменты, УЗ. К примеру в лечении гнойных заболеваний был разработан комплекс мероприятий, который включает лазерную обработку, использование антиоксидантов и различных биологически активных материалов.

Лазерные технологии и медицина должны идти рука об руку в будущее. Даже уже сегодня новейшие разработки в лазерной медицине помогают в удалении раковых опухолей, применяются в коррекции тела в косметологии и зрения в офтальмологии. Малоинвазивная хирургия, когда с использованием лазера делаются очень сложные операции.

Похожие материалы!

В современной медицине используется множество достижений науки и техники. Они помогают своевременной диагностике заболеваний и способствуют их успешной терапии. Медики активно применяют в своей деятельности возможности лазерного излучения. В зависимости от длины волн оно может по-разному влиять на ткани организма. Поэтому учеными было изобретено много медицинских многофункциональных приборов, которые широко используются в клинической практике. Обсудим применение лазера и излучений в медицине чуть более подробно.

Лазерная медицина развивается по трем основным направлениям: в хирургии, терапии и диагностике. Влияние лазерного излучения на ткани определяется диапазоном излучения, длиной волны и энергией фотона излучателя. В целом все виды влияния лазера в медицине на организм можно разделить на две группы

Низкоинтенсивное лазерное излучение;
- высокоинтенсивное лазерное излучение.

Как влияет на организм низкоинтенсивное лазерное излучение?

Воздействие таким лазером может вызывать изменение в тканях организма биофизичеческих, а также химических процессов. Также такая терапия приводит к изменениям метаболизма (обменных процессов) и к его биоактивации. Влияние лазером низкой интенсивности вызывает морфологические и функциональные изменения нервных тканей.

Также такое воздействие стимулирует сердечно-сосудистую систему и микроциркуляцию.
Еще лазер низкой интенсивности повышает биологическую активность клеточных, а также тканевых кожных элементов, приводит к активации внутриклеточных процессов в мышцах. Его использование позволяет запустить окислительно-восстановительные процессы.
Кроме всего прочего подобный метод воздействия положительно сказывается на общей устойчивости организма.

Какой лечебный эффект достигается при применении низкоинтенсивного лазерного излучения?

Такой способ терапии способствует устранению воспаления, снижению отечности, устранению болезненных ощущений и активации процессов регенерации. Кроме того он стимулирует физиологические функции и иммунный ответ.

В каких случаях медики могут применять низкоинтенсивное лазерное излучение?

Такой метод воздействия показан пациентам с острыми и хроническими воспалительными процессами различной локализации, травмами мягких тканей, ожогами, обморожениями и кожными недугами. Есть смысл использовать его при недугах периферический нервной системы, болезнях опорно-двигательного аппарата и при многих заболеваниях сердца и сосудов.

Также низкоинтенсивное лазерное излучение применяется в терапии органов дыхания, пищеварительного тракта, мочеполовой системы, ЛОР-заболеваний и нарушений иммунного статуса.

Такой метод терапии широко применяется в стоматологии: при коррекции недугов слизистых оболочек ротовой полости, болезней пародонта и ВНЧС (височно-нижнечелюстного сустава).

Кроме того таким лазером лечат некариозные поражения, возникшие в твердых тканях зубов, кариес, пульпиты и периодонтиты, лицевые боли, воспалительные поражения и травмы челюстно-лицевого участка.

Применение в медицине высокоинтенсивного лазерного излучения

Высокоинтенсивное лазерное излучение чаще всего применяют в хирургии, причем в разных ее областях. Ведь влияние высокоинтенсивным лазерным излучением помогает разрезать ткани (действует как лазерный скальпель). Иногда его используют для достижения антисептического эффекта, для формирования коагуляционной пленки и для образования защитного барьера от агрессивных воздействий. Кроме того такой лазер может применяться при сварке металлических протезов и различных ортодонтических приспособлений.

Как влияет высокоинтенсивное лазерное излучение на организм?

Такой метод воздействия вызывает термический ожог тканей или приводит к их коагуляции. Он становится причиной испарения, сгорания или обугливания соответствующих участков.

Когда используется высокоинтенсивное лазерное излучение

Такой метод воздействия на организм широко применяется при выполнении самых разных оперативных вмешательств в области урологии, гинекологии, офтальмологии, отоларингологии, ортопедии, нейрохирургии и пр.

При этом лазерная хирургия имеет массу плюсов:

Практически бескровные операции;
- максимальная асептичность (стерильность);
- минимум послеоперационных осложнений;
- минимум воздействия на соседние ткани;
- короткий послеоперационный период;
- высокоточность;
- снижение вероятности формирования рубцов.

Лазерная диагностика

Этот метод диагностики является прогрессивным и развивающимся. Он позволяет определить многие серьезнейшие заболевания на ранней стадии развития. Есть данные, что лазерная диагностика помогает в выявлении рака кожи, костных тканей и внутренних органов. Ее применяют в офтальмологии – для обнаружения катаракты и определения ее стадии. Кроме того такой метод исследования практикуют гематологи – для того чтобы исследовать качественные и количественные изменения кровяных клеточек.

Лазер эффективно определяет границы здоровых и патологических тканей, его можно использовать в сочетании с эндоскопической аппаратурой.

Использование излучения в медицине прочей природы

Медики широко используют различные виды излучений в терапии, диагностике и профилактике разных состояний. Чтобы узнать про применение излучений просто перейдите по интересующим ссылкам:

Рентгеновские лучи в медицине
- радиоволны
- тепловые и ионизирующие лучи
- ультрафиолетовое излучение в медицине
- инфракрасное излучение в медицине