Стабильность напряжения питания является необходимым условием правильной работы многих электронных устройств. Для стабилизации постоянного напряжения на нагрузке при колебаниях сетевого напряжения и изменении потребляемого нагрузкой тока между выпрямителем с фильтром и нагрузкой (потребителем) ставят стабилизаторы постоянного напряжения.

Выходное напряжение стабилизатора зависит как от входного напряжения стабилизатора, так и от тока нагрузки (выходного тока):

Найдем полный дифференциал изменение напряжения при изменении и :

Разделим правую и левую части на , а также умножим и разделим первое слагаемое в правой части на , а второе слагаемое на .

Вводя обозначения и переходя к конечным приращениям, имеем

Здесь - коэффициент стабилизации, равный отношению приращений входного и выходного напряжений в относительных единицах;

Внутреннее (выходное) сопротивление стабилизатора.

Стабилизаторы подразделяются на параметрические и компенсационные.

Параметрический стабилизатор основан на использовании элемента с нелинейной характеристикой, например полупроводникового стабилитрона (см. § 1.3). Напряжение на стабилитроне на участке обратимого электрического пробоя почти постоянно при значительном изменении обратного тока через прибор.

Схема параметрического стабилизатора приведена на рис. 5.10, а.

Рис. 5.10. Параметрический стабилизатор (а), его схема замещения для приращений (б) и внешняя характеристика выпрямителя со стабилизатором (кривая 2) и без стабилизатора (кривая ) (в)

Входное напряжение стабилизатора должно быть больше напряжения стабилизации стабилитрона . Для ограничения тока через стабилитрон устанавливается балластный резистор Выходное напряжение снимается со стабилитрона. Часть входного напряжения теряется на резисторе , оставшаяся часть приложена к нагрузке:

Учитываем, что , получаем

Наибольший ток через стабилитрон протекает при

Наименьший ток через стабилитрон протекает при

При обеспечении условий - токи стабилитрона, ограничивающие участок стабилизации, напряжение на нагрузке стабильно и равно . Из .

При увеличении растет ток , увеличивается падение напряжения на . При увеличении сопротивления нагрузки уменьшается ток нагрузки, растет на то же значение ток через стабилитрон, падения напряжения на и на нагрузке остаются неизменными.

Для нахождения построим схему замещения стабилизатора рис. 5.10, а для приращений. Нелинейный элемент работает на участке стабилизации, где его сопротивление переменному гоку является параметром прибора. Схема замещения стабилизатора приведена на рис. . Из схемы замещения получаем

Учитывая, что в стабилизаторе , имеем

Для нахождения , так же как и при расчете параметров усилителей (см. § 2.3), воспользуемся теоремой об эквивалентном генераторе и положим , тогда сопротивление на выходе стабилизатора

Выражения (5.16), (5.17) показывают, что параметры стабилизатора определяются параметрами используемого полупроводникового стабилитрона (или другого прибора). Обычно для параметрических стабилизаторов не более 20-40, а лежит в пределах от нескольких ом до нескольких сот ом.

В ряде случаев такие показатели оказываются недостаточными, тогда применяют компенсационные стабилизаторы. На рис. 5.11 приведена одна из простейших схем компенсационных стабилизаторов, в котором нагрузка подключена к источнику входного напряжения через регулирующий нелинейный элемент, транзистор V. На базу транзистора через ОУ подается сигнал ОС. На вход ОУ поступают напряжения с высокоомного резистивного делителя и эталонное (опорное) напряжение .

Рис. 5.11. Простейшая схема компенсационного стабилизатора с ОУ

Рассмотрим работу стабилизатора. Предположим, что увеличилось напряжение , вслед за ним возрастает и При этом на инвертирующий вход ОУ подается положительное приращение напряжения , а на выходе ОУ возникает отрицательное приращение напряжения . К управляющему эмиттерному переходу транзистора V приложена разность базового и эмиттерного напряжений . В рассматриваемом нами режиме , ток транзистора V уменьшается и напряжение ивых снижается почти до первоначального значения. Аналогично будет отработано изменение ивых при увеличении или уменьшении : изменится , возникнет соответствующего знака, изменится ток транзистора . очень высока, так как в процессе работы режим работы стабилитрона практически не изменяется и ток через него стабилен.

Компенсационные стабилизаторы напряжения выпускаются в виде ИМС, которые включают в себя регулирующий нелинейный элемент, транзистор V, ОУ и цепи, связывающие нагрузку с его входом.

На рис. 5.10, в показана внешняя характеристика источника питания со стабилизатором, ее рабочий участок ограничен значениями тока

Текущая страница: 1 (всего у книги 1 страниц)

Стабилизаторы напряжения и тока на ИМС

Задача создания стабильного источника питания встает всякий раз, когда необходимо обеспечить независимость параметров электронного устройства от изменений питающего напряжения. Современная аппаратура, работающая на цифровых и аналоговых микросхемах, всегда предусматривает наличие стабилизаторов напряжения и тока, как правило, нескольких. С распространением интегральных операционных усилителей (ОУ) появилась возможность решить эту задачу просто и эффективно с точностью регулировки и стабильности в диапазоне 0,01…0,5 %, причем ОУ легко встраивать в традиционные стабилизаторы напряжения и тока.

Простейший стабилизатор напряжения представляет собой усилитель постоянного тока, на вход которого подано постоянное напряжение стабилитрона или часть его. Нагрузочная способность такого стабилизатора определяется силой максимального выходного тока ОУ.

Следящие стабилизаторы, как известно, работают на принципе сравнения опорного и выходного напряжений, усиления их разности и управления электропроводностью регулирующего транзистора.

Стабилизатор по схеме рис. 1 выдает напряжение U вых большее, чем опорное напряжение стабилитрона V D1, а стабилизатор по схеме рис. 2 – меньшее.

Рис. 1. Стабилизатор с делителем выходного напряжения

Рис. 2. Стабилизатор с делителем опорного напряжения

Стабилизаторы питаются от одного источника. С помощью эмиттерного повторителя V T2 увеличивают ток нагрузки, в нашем примере – до 100 мА, но можно и более с составным повторителем на мощном транзисторе. Транзистор V T1 защищает выходной транзистор V T2 от перегрузок по току, причем датчиком тока служит резистор R8 небольшого сопротивления, включенный в цепь эмиттера транзистора V T2. Когда падение напряжения на нем превысит Uб–э=0,6 В, откроется транзистор V T1 и зашунтирует эмиттерный переход транзистора V T2. При токах нагрузки до 10… 15 мА резисторы R7, R8 и транзисторы V T1, VT2 можно не ставить. Отметим, что в стабилизаторах по схемам рис. 1 и 2 входное напряжение не должно превышать максимально допустимой для ОУ суммы напряжений питания.

Если проектируемый источник питания имеет выходное напряжение, не меньшее чем сумма минимально допустимых напряжений питания для имеющегося ОУ, то его лучше включить в стабилизатор таким образом, чтобы усилитель питался стабилизированным напряжением. Схема подобного стабилизатора приведена на рис. 3.

Рис. 3. Улучшенный стабилизатор напряжения:

a – принципиальная схема, б – нагрузочная характеристика

Здесь дополнительно включены несколько элементов, улучшающих работу стабилизатора напряжения. Потенциал выхода О У DA1 смещен в сторону положительного напряжения с помощью стабилитрона V D3 и транзистора V T1. Выходной эммитерный повторитель – составной (VT2, VT3), а к базе защитного транзистора V T4 подключен делитель R4R5, что позволяет создать «падающую» характеристику ограничения тока перегрузки. Ток короткого замыкания не превышает 0,3 А, хотя нормальный рабочий ток составляет 0,5 А. Термоком–пенсированный источник опорного напряжения выполнен на микросхеме К101КТ1А (DA2). Выходное напряжение стабилизатора, равное +15 В, изменяется всего на 0,0002 % при изменении входного напряжения в пределах 19…30 В; при изменении тока нагрузки от нуля до номинального выходное напряжение падает лишь на 0,001 %. В этом стабилизаторе подавление пульсаций входного напряжения частотой 100 Гц составляет 120 дБ. К достоинствам стабилизатора следует отнести также и то, что в отсутствии нагрузки потребляемый ток составляет около 10 мА. При скачкообразном изменении тока нагрузки выходное напряжение устанавливается с погрешностью 0,1 % за время не более 5 мкс.

Практически нулевые пульсации напряжения на выходе может обеспечить стабилизатор по схеме рис. 4.

Рис. 4. Источник питания с компенсированными пульсациями

Если движок переменного резистора R1 находится в верхнем (по схеме) положении, амплитуда пульсаций максимальна. По мере перемещения движка вниз амплитуда будет уменьшаться, так как напряжение пульсаций, поданное на инвертирующий вход ОУ через конденсатор С2, в противофазе складывается с выходным напряжением пульсаций. Примерно в среднем положении движка резистора R1 пульсации будут компенсированы.

Стабилизаторы по приведенным выше схемам рассчитаны на положительное выходное напряжение. Чтобы получить отрицательное, надо в качестве повторителя применить р–n–р транзистор, а также заземлить положительную шину питания ОУ. Но можно поступить по–другому, если в аппаратуре требуются стабилизированные напряжения разной полярности. На рис. 5 приведены две упрощенные схемы соединения стабилизаторов для получения выходных напряжений разного знака.

Рис. 5. Схема образования двуполярного стабилизированного напряжения:

а – на разнополярных стабилизаторах, б - на одинаковых стабилизаторах

В первом случае входная и выходная цепи имеют общую шину. Пусть, например, имеются только положительные стабилизаторы. Тогда в стабилизаторе по второй схеме их можно применить, если оба канала по входным цепям гальванически развязаны, чтобы можно было заземлять положительный полюс нижнего (по схеме) стабилизатора. Источником опорного напряжения для одного из каналов служит стабилитрон, а для второго – выходное напряжение первого стабилизатора. Для этого необходимо включить делитель из двух резисторов между выводами +U СT и – U CT стабилизаторов и подвести напряжение средней точки делителя к неинвертирующему входу ОУ второго стабилизатора, заземлив инвертирующий вход ОУ. Тогда выходные напряжения двух стабилизаторов (несимметричные в общем случае) связаны и регулирование напряжений осуществляется одним переменным резистором.

Если для питания устройства используется одна батарея, а необходимы два питающих напряжения с заземленной средней точкой, тр можно применить активный делитель на ОУ с повторителями для увеличения нагрузочной способности (рис. 6).

Рис. 6. Преобразование однополярного напряжения в симметричное двуполярное

Если R1 = R2, то равны и выходные напряжения относительно заземленной средней точки. Через выходные транзисторы V T1 и V T2 протекают полные токи нагрузки, а падения напряжения на участках коллектор – эмиттер равны половине входного напряжения. Зто надо иметь в виду при выборе радиаторов охлаждения.

Ключевые стабилизаторы напряжения зарекомендовали себя наилучшим образом с точки зрения экономичности, так как КПД таких устройств всегда высокий. Несмотря на их сложность по сравнению с линейными стабилизаторами-, только за счет уменьшения размеров теплоотводящего радиатора проходного транзистора ключевой стабилизатор позволяет уменьшить габариты регулируемого мощного источника питания в два–три раза. Недостаток ключевых стабилизаторов заключается в повышенном уровне помех. Однако рациональное конструирование, когда весь блок выполнен в виде экранированного модуля с расположенной непосредственно на теплоотводе мощного транзистора платой управления, позволяет свести помехи к минимуму. Устранить «пролезание» высокочастотных помех в не–стабилизиоованный источник первичного питания и нагрузку можно путем включения последовательно радиочастотных дросселей, рассчитанных на постоянный точ 1…3 А. Имея в виду эти замечания, подготовленный радиолюбитель может браться за создание ключевых стабилизаторов напряжения, в которых с успехом работают интегральные компараторы.

Для примера приведём описание релейного стабилизатора на базе микросхемы К554СА2 (рис. 7).

Рис. 7. Релейный стабилизатор с регулированием выходного напряжения

В нем компаратор DA1 работает от источников напряжением + 12 и – G В. Эта комбинация образована подключением вывода 11 положительного питания DA1 к эмиттеру транзистора V TI (+18 В), вывода 2 – к стабилитрону V D6 (примерк +6 В), вывода 6 отрицательного питания – к нулевому потенциалу общей шины. Опорное напряжение стабилизатора формируется диодами V D3 VD5, оно равно +4,5 В. Это напряжение подается ка неинвертирующий вход компаратора DA1, включенного по схеме детектора уровня с гистерезисной характеристикой из-за положительной обратной связи по цепи R5, R3. Цепь отрицательной обратной связи замыкается через усилительный транзистор V T2, ключевой элемент на транзисторах V T3, VT4 и фильтр L 1C7. Глубину отрицательной обратной связи по выходному напряжению регулируют переменным резистором R4, в результате оно изменяется в пределах 4…20 В при минимальном входном нестабилизированном напряжении +23 В и максимальном – до +60 В с применением элементов, рассчитанных на такое напряжение. В то же время переменная составляющая выходного напряжения (пульсации) проходит без ослабления через конденсатор С4, поэтому регулирование выходного напряжения не приводит к пропорциональному изменению пульсаций.

Данный стабилизатор напряжения относится к числу автогенерирующих, когда в зависимости от входного напряжения и тока нагрузки, разряжающего накопительный конденсатор С7, автоматически меняется как период автоколебаний, так и время включенного состояния транзисторов V T3, VT4. Усилитель управления на компараторе DA1 и транзисторе V T2 открывает ключевой элемент в тот момент, когда потенциал инвертирующего входа станет немного меньше, чем потенциал неин–вертирующего (опорного) входа. В этот момент напряжение на нагрузке падает несколько ниже заданного Уровня стабилизации, т. е. пульсирует. После включения транзисторов V T3, VT4 ток через дроссель L 1 нарастает, его индуктивность и конденсатор С7 запасают энергию, так что потенциал инвертирующего входа повышается. Благодаря действию усилителя управления ключевой элемент закрывается. Затем фильтр L 1C7 отдает некоторую часть запасенной энергии в нагрузку, причем полярность напряжения на дросселе L 1 изменяется и цепь питания замыкается через диод V D7. Как только напряжение на конденсаторе С7 станет ниже опорного на величину гистерезиса, вновь включаются транзисторы V T3, VT4. Далее циклы повторяются.

Скорость этих процессов определяется номиналами дросселя L 1, конденсатора С7 и нагрузкой. Оценку частоты можно произвести по формуле

где АU – амплитуда пульсаций выходного напряжения.

Очевидно, что изменение частоты автоколебаний релейного стабилизатора можно значительно уменьшить, если увеличить разность между входным и выходным напряжениями. Частота автоколебаний, когда стабилизатор работает с лучшим КПД, составляет 10…40 кГц.

Особое внимание следует обратить на выбор материала сердечника дросселя и типа демпфирующего диода V D7.

Наилучший материал тороидального сердечника без зазора – прессованный порошкообразный пермаллой марок МП160-1, МП140-1, МП140-3. При выборе параметров дросселя следует обеспечить условие непрерывности тока, когда время полной разрядки дросселя через диод V D7 на конденсатор С7 и нагрузку больше, чем время закрытого состояния ключевого элемента. Необходимо выполнение следующего неравенства;

где I нагр – минимальное значение силы тока нагрузки.

Можно также применить дроссели фильтров промышленного изготовления, например из серий Д8, Д5 – плоские и др., среди которых выбирают типономинал с требуемой индуктивностью, рассчитанной на ток под–магничивания не менее ожидаемого максимального тока нагрузки и пригодный к использованию на частотах до 50 кГц.

Диод V D7 должен быть обязательно быстродействующим с большим допустимым импульсным током, не менее удвоенного значения тока нагрузки. В стабилизаторе по схеме на рис. 7, где ток нагрузки 2 А, возможна замена его на диоды КД212Б, КД217А и некоторые другие.

Кроме того, необходимо выбрать высококачественный оксидно–полупроводниковый конденсатор С7 с двойным запасом по емкости относительно расчетной величины и по номинальному напряжению, желательно из ряда К53 или танталовый типов К52-7А, К52-9, К52-10. Можно применить бумажные конденсаторы, но габариты стабилизатора тогда увеличатся.

Как известно, емкость электролитических конденсаторов с ростом частоты уменьшается, а потери в них возрастают. Ориентировочно для танталовых конденсаторов типа ЭТО емкость на частоте 20 кГц уменьшается в 10 раз, а для оксидно–полупроводниковых-= на 30… 40 % по сравнению со значением емкости на частоте 50 Гц. Поэтому и приходится выбирать емкость конденсатора С7 с запасом, а также ограничивать частоту автоколебаний до 20 кГц. Это – оптимальная величина. Фильтрующие конденсаторы малой емкости объединяют параллельно в батарею, которую дополнительно шунтируют керамическим конденсатором С9 емкостью не менее 1,5…2,2 мкФ. Если такой возможности нет, можно увеличить ДU, а к выходу подключить дополнительный фильтр с малым омическим сопротивлением, чтобы на нем не создавать заметного падения напряжения при изменениях тока нагрузки.

Несоблюдение этих рекомендаций обычно приводит к тому, что на низкокачественных дросселе, диоде и конденсаторе фильтра выделяется чрезмерная мощность, падает КПД стабилизатора и возрастают пульсации отфильтрованного напряжения. Разумеется, что транзисторы ключевого элемента также необходимо выбирать высокочастотными и достаточной мощности.

Приведенная на рис. 7 схема релейного стабилизатора может быть дополнительно снабжена устройством защиты от превышения тока нагрузки в режиме короткого замыкания. Амплитуда пульсаций выходного напряжения при определенных условиях может быть уменьшена путем подключения ключевого элемента к части обмотки дросселя L 1, а диода V D7 - ко всей его обмотке. При этом напряжении коллектор – эмиттер транзистора V T4 становится меньше, а обратное напряжение на диоде V D7 – больше.

Большая потребность в стабилизаторах для питания аппаратуру привела к тому, что были разработаны и внедрены специальные линейные микросхемы – стабилизаторы напряжения. В интегральном исполнении преобладают последовательные регуляторы с непрерывным пли импульсным режимом управления. Стабилизаторы строятся как для положительных, так и для отрицательных напряжений питания. Выходное напряжение может быть регулируемым или фиксированным, например +5 В для питания блоков с цифровыми ТТЛ–микросхемами или ± 15 В для аналоговых микросхем. Микросхемам с большими токами нагрузки необходимы радиаторы охлаждения. Это не вызывает конструктивных трудностей, так как микросхемы размещены в таких же корпусах, как и мощные транзисторы.

Перечень микросхем приведен в таблице.

Из выпускаемых интегральных стабилизаторов наиболее распространены относящиеся к категории регулируемых стабилизаторов КРН2ЕН1 и КР142ЕН2. Для этих микросхем с различными буквенными индексами характерны следующие параметры:

коэффициент нестабильности по входному напряжению 0,1.. 0,5% коэффициент нестабильности по току нагрузки 0,2… 1 %

В микросхеме стабилизатора КР142ЕН1.2 нашли воплощение те принципы, которые мы рассмотрели на примере стабилизаторов по схемам на рис. 1, 2 и 3. Подключение стабилизатора КР142ЕН1 показано на рис. 8.

Рис. 8. Основная схема включения регулятора КР142ЕН1

Опорное напряжение на выводе 5 микросхемы составляет около 2 В, причем делитель напряжения, снимаемого с опорного стабилитрона, введен в состав микросхемы. Благодаря этому при построении стабилизаторов с выходными напряжениями от 3 до 30 В применяют одну и ту же схему включения с внешним делителем выходного напряжения. Дополнительно отметим, что у микросхемы КР142ЕН1.2 имеются свободные выводы не только инвертирующего (вывод 3), но и неинвертирующего (вывод 4) входов усилителя, что упрощает стабилизатор отрица тельного напряжения с этой ИМС. В этом заключается основное отличие микросхемы КРН2ЕШ,2 от микросхемы 142ЕН1.2 более раннего выпуска.

Внешний транзистор V T1 – это эмиттерный повторитель для увеличения тока нагрузки до 1…2 А. Если требуется ток не более 50 мА, то транзистор следует исключить, используя вывод 8 микросхемы вместо эмиттерного вывода транзистора V T1.

В составе микросхемы имеется транзистор, защищающий выходной каскад от перегрузки по току. Токо–ограничительное сопротивление резистора R4 выбирают из расчета падения напряжения на нем 0,66 В при протекании аварийного тока. Без змиттерного повторителя V T1 следует установить резистор R4 сопротивлением 10 Ом.

Чтобы создать «падающую» характеристику ограничения тока перегрузки, подключают делитель R2R3 и производят расчет по следующим зависимостям:

Пример, I макс = 0,6 А (задано); I К3 – 0,2 А (выбираем не менее 1 /з I макс); U бЭ =0,66 В; U вых =12 В (задано); а = 0,11 (по расчету); R3 = 10 кОм (типичное значение); R2 = 1,24 кОи; R4 = 3,7 Ом.

В микросхеме дополнительно имеется вывод 14 для Управления стабилизатором. Если подать на этот вход единичный ТТЛ–уровень + (2,5…5) В, то выходное напряжение стабилизатора упадет до нуля. Чтобы обратный ток при наличии емкостной нагрузки не разрушил выходной транзистор, установлен диод V D1.

Конденсатор С1 емкостью 3,3…10 мк подавляет шум стабилитрона, однако установка его не является необходимой. Конденсатор С2 (емкостью до 0,1 мк) – элемент частотной коррекции; допустимо вместо него соединить вывод 13 с «земляным» проводом через последовательную RС–цепь 360 Ом (максимум) и 560 пФ (минимум).

На базе микросхем КР142ЕШ.2 (рис. 8) можно создавать стабилизаторы отрицательных напряжений (рис. 9).

Рис 9. Стабилизация отрицательного напряжения

При этом стабилитрон V D1 смещает уровень напряжения на выводе 8 относительно входного напряжения. Базовый ток транзистора V T1 не должен превышать максимально допустимого тока стабилитрона, иначе следует применить составной транзистор.

Широкие возможности микросхем КР142ЕН1,2 позволяют создавать на их основе релейные стабилизаторы напряжения, пример которых дан на рис. 10.

Рис. 10. Релейный стабилизатор напряжения

В таком стабилизаторе опорное напряжение, как и в стабилизаторе по схеме рис. 8, установлено делителем R4R5, а амплитуда пульсаций выходного напряжения на нагрузке задается вспомогательным делителем R2R3 и равна &U=U B x-R4IR3. Частота автоколебаний определяется из тех же соображений, что и для стабилизатора по схеме на рис. 7. Следует лишь иметь в виду, что ток нагрузки не может изменяться в широких пределах, обычно не более чем в два раза от номинального значения. Преимуществом релейных стабилизаторов является высокий КПД.

Необходимо рассмотреть еще один класс стабилизаторов – стабилизаторов тока, преобразующих напряжение в ток независимо от изменения сопротивления нагрузки. Из таких стабилизаторов, позволяющих заземлять нагрузку, отметим стабилизатор по схеме на рис. 11.

Рис. 11. Стабилизатор тока на ОУ

Ток нагрузки стабилизатора I u =U B-x .lRl. Интересно, что если напряжение U BX подавать на инвертирующий вход, то изменится только направление тока без изменения его значения.

Более мощные источники тока предусматривают подключение к ОУ усилительных транзисторов. На рис. 12 дана схема источника тока, а на рис. 13 – схема приемника тока.


Рис. 12. Прецизионная схема источника тока; входное напряжение – отрицательное

Рис 13. Схема прецизионного отвода тока; входное напряжение – положительное

В обоих устройствах сила тока определяется расчетом так же, как и в предыдущем варианте стабилизатора. Этот ток тем точнее зависит лишь от напряжения U вх и номинала резистора R1, чем меньше входной ток ОУ и чем меньше ток управления первого (после ОУ) транзистора, который выбран поэтому полевым. Ток нагрузки может достигать 100 мА.

Схема простого мощного источника тока для зарядного устройства показана на рис. 14.

Рис. 14. Источник тока высокой мощности

Здесь R4 – токоизмерительный проволочный резистор. Номинальное значение тока нагрузки I н =ДU/R4 = 5 А устанавливается. примерно при среднем положении движка резистора R1. При зарядке автомобильной аккумуляторной батареи напряжение U вх >18 В без учета пульсаций выпрямленного переменного напряжения. В таком устройстве следует применять ОУ с диапазоном входного напряжения вплоть до напряжения положительного питания. Такими возможностями обладают ОУ К553УД2, К153УД2, К153УД6, а также КР140УД18.

Литература

Бокуняев А. А. Релейные стабилизаторы постоянного напряжения – М: Энергия, 1978, 88 с.

Рутксвски Дж. Интегральные операционные усилители. – М.: Мир, 1978, 323 с.

Xоролац П, Хилл У. Искусство схемотехники, т. 1. – М.; Мир, – 1986, 598 с.

Спенсер Р Недорогой источник питания с нулевыми пульсациями. – Электроника, 1973, № 23, с 62.

Шило В. Л Линейные интегральные схемы. – М. Cов. Радио, 1979, 368 с.

Проведем расчет для канала стабилизатора на 36В и 1А, изображенного на рисунке 4.

Рисунок 4- Схема стабилизатора второго канала

Определим требуемый коэффициент стабилизации стабилизатора:

Зададим точку покоя регулировочного транзистора VT1. При токе в нагрузке 1 А и выходном напряжение 51 В среднее значение напряжения перехода коллектор-эмиттер должно составлять 51-36=15 В. Тогда мощность рассеивания на коллекторе транзистора около 15 Вт. Подбираем транзистор, с выходной характеристикой, близкой к изображенной на рисунке 5, строим нагрузочную прямую и отмечаем точку покоя А для среднего входного напряжения.

Согласно графическим расчетам, выбираем регулирующий транзистор VT1 с большим значением максимального тока коллектора (т.к. номинальный ток велик и равен 1А), например MТ7667. Параметры: максимальный ток коллектора I kmax =3 А, максимальное напряжение коллектор-эмиттер U кэmax =50 В, максимальная мощность рассеяния на коллекторе транзистора Р кmax =25 Вт, коэффициент усиления по току h 21э =70..100, граничная частота коэффициента передачи тока f г =30 MГц .


Рисунок 5- Выходная характеристика регулировочного транзистора

Соответственно на входной характеристике

Рисунок 6- Входная характеристика регулировочного транзистора

Ток базы покоя регулировочного транзистора при среднем коэффициенте усиления по току:

Выбранный ток базы, согласно рисунку 5, 6 составляет

U выхОУ = U бэ + U нmax < U выхmaxОУ;

Uбэ = 1,51 В;

U нmax =36·0.01+36=36.36 В

U выхОУ = 1,51+36.36=37,9 В

I выхОУ = I бmax VT1 = ;

Выбираем операционный усилитель PM155C, c параметрами: напряжение источника питания U ИП =40..50 В, коэффициент усиления 450, входное сопротивление R вх =25 МОм, потребляемая мощность 200мВт, входной ток I вх =80 нА, значения выходных напряжения и тока ОУ: U выхmaxОУ =50 В, I выхmaxОУ =40 мА.

Опорное напряжение формируем с помощью стабилитрона 2N3623, для которого: номинальное напряжение стабилизации 5 В, ток стабилизации 20 мА.

U оп = U ст < U нmin ;

определим сопротивление балластного резистора R1. Из условия I ст ном >> I вхОУ

R1 = = =2300 Ом.

Принимаем стандартное значение 2.3 кОм.

Определим сопротивление резистора R4 из выражения:

U вх =I бVT1 R4+U бэ,

Принимаем стандартное значение 2.7кОм.

Обеспечить требуемые выходные параметры ОУ можно введением обратной связи. Рассчитаем цепь обратной связи: R2-R3, при коэффициенте усиления 10- при меньших значениях будет малая чувствительность, при больших - ОУ быстро будет переходить в насыщение.

Выражая Я, получим:

Так же. Чтобы резисторы не оказывали большого влияния на работу схемы, т.е. ток делителя составлял несколько миллиампер, возьмем значение R3=51кОм, тогда R2==525кОм (Ближайшее стандартное 510кOм).

Рассчитаем сопротивления делителя R5-R6. Задаваясь током делителя 1 мА, и формируя напряжение обратной связи близкой к 5В, но менее его (для получения положительного сигнала на выходе ОУ), получаем:

R5=(36-5)/0.001=31 кОм;

R6=5/0.001=5 кОм.

Принимаем стандартные значения R5=33кОм R6=5.1 кОм

Проверим правильность выбора сопротивлений:

Напряжение обратной связи, снимаемого с R6 менее опорного (5В), значит, выбор резисторов был проведен правильно.

Рассчитаем элементы схемы защиты от короткого замыкания. Транзистор VT2 при токе нагрузки в пределах 1 А находится в режиме отсечки. При достижение тока нагрузки выше 1 А, VT2 начинает открываться и закорачивает базу VT1, призакрывая его, что вызывает ограничение тока нагрузки. Напряжение, приложенное к переходу коллектор- эммитер VT2 в открытом состоянии за вычетом падения напряжения на R4 (36- 1,51=34.49 В) и напряжения на диоде в прямом направление составит примерно 34 В. Максимальный коллекторный ток в открытом состояние I к нас около 36 мА (рисунок 5).

Возьмем в качестве датчика тока резистор R7 сопротивлением 1 Ом. Тогда при номинальном токе в нагрузке не более 1 А, падение напряжения на нем не превысит 1В.

Выберем в качестве VT2 транзистор 2N2411, с параметрами: максимальный ток коллектора I kmax =160мА, коэффициент усиления по току h 21э =100, максимальное напряжение коллектор-эмиттер U кэmax =100 В, максимальная мощность рассеяния на коллекторе транзистора Р кmax =160 мВт. Диод VD4 - DN380: U ОБР max =100 В, I max vd =1 A

Согласно выбранному режиму работы (рисунок 7) можно найти по выходной характеристики (рисунок 8) коллекторный ток VT2.

Рисунок 7- Входная характеристика транзистора VT2


Рисунок 8- Выходная характеристика транзистора VT2

Для режима отсечки U бэ <1 В и насыщения U бэ >1,2В. Соответственное изменение тока базы обеспечивает резистор R8.

R8= U бэ / I б = 1/1·10 -3 =1 кОм

Конденсатор С1 предотвращает ложное срабатывание схемы защиты при включение ИБП и его емкость подбирается соответственно для пропускания импульсов малой длительности. Примем значение С1=3.3 нФ.

Рассчитаем номиналы элементов схемы защиты от перенапряжения. Выбираем стабилитрон 2С514А: напряжение стабилизации 40В, минимальное напряжение стабилизации 38В, ток стабилизации 15мА; минимальный ток стабилизации 10мА ; транзисторную оптопару АОТ120ЕС: входной ток 3мА, напряжение изоляции 500В, максимальное входное напряжение 1.6В.

В случае достижения напряжения на нагрузке превышающего 38В, равное сумме напряжения стабилизации стабилитрона и прямого падения напряжения на оптроне (от 0.1 до 0.5В), происходит открытие VD5 и начинает протекать ток (минимальный ток стабилизации). Для обеспечения входного напряжения открытия оптопары в 1.6В, необходимо чтобы сопротивление R9 было не более 1.6/0.005=320Ом. Примем стандартное значение R9=300Ом.


Рисунок 9 - Схема моделирования


Рисунок 10 - Выходной сигнал схемы моделирования


В связи с этим часть напряжения, поступающая на выход стабилизатора, «остается» на транзисторе, а остальная поступает на выход стабилизатора. Если увеличить напряжение па базе составного транзистора, то он откроется и падение напряжения на нем уменьшится, а напряжение на выходе стабилизатора соответственно увеличится. И наоборот. В обоих случаях величина напряжения на выходе стабилизатора будет близка к уровню напряжения на базе составного транзистора.


Поддержание величины напряжения на выходе стабилизатора на заданном уровне осуществляется за счет того, что часть выходного напряжения (напряжение отрицательной обратной связи) с делителя напряжения R10, R11, R12 поступает на операционный усилитель DA1 (усилитель напряжения отрицательной обратной связи). Выходное напряжение операционного усилителя в этой схеме будет стремиться к такому значению, при котором разница напряжений на его входах была бы равна нулю.

Происходит это следующим образом. Напряжение обратной связи с резистора R11 поступает на вход 4 операционного усилителя. На входе 5 стабилитроном VD6 поддерживается постоянная величина напряжения (опорное напряжение). Разница напряжении на входах усиливается операционным усилителем и поступает через резистор R3 на базу составного транзистора, падение напряжения на котором определяет величину выходного напряжения стабилизатора. Часть входного напряжения с резистора R11 снова поступает на операционный усилитель. Таким образом, сравнение напряжения обратной связи с образцовым и воздействие выходного напряжения операционного усилителя на выходное напряжение стабилизатора происходит непрерывно.

Если напряжение на выходе стабилизатора увеличивается, то увеличивается и напряжение обратной связи, поступающее на вход 4 операционного усилителя, которое становится больше опорного.

Разность этих напряжений усиливается операционным усилителем, выходное напряжение которого при этом уменьшается и закрывает составной транзистор. В результате падение напряжения на нем увеличивается, что вызывает уменьшение выходного напряжения стабилизатора. Этот процесс продолжается до тех пор, пока напряжение обратной связи не станет почти равным опорному (их разница зависит от типа используемого операционного усилителя и может составлять 5...200мВ).

При уменьшении выходного напряжения стабилизатора происходит обратный процесс. Так как напряжение обратной связи уменьшается, становясь меньше опорного, то разница этих напряжений на выходе усилителя напряжения обратной связи увеличивается и открывает составной транзистор, обеспечивая тем самым увеличение выходного напряжения стабилизатора.

Величина выходного напряжения зависит от достаточно большого числа факторов (тока, потребляемого нагрузкой, колебания напряжения первичной сети, колебаний температуры внешней среды и т. п.). Поэтому описанные процессы в стабилизаторе происходят непрерывно, г. е. выходное напряжение постоянно колеблется с очень малыми отклонениями относительно заранее заданного значения.

Источником опорного напряжения, поступающего на вход 5 операционного усилителя DA1, служит стабилитрон VD6. Для увеличения стабильности опорного напряжения напряжение питания на него подается с параметрического стабилизатора на стабилитроне VD5.

Для защиты стабилизатора от перегрузок используется оптопара VU1, датчик тока (резистор R8) и транзистор VT3. Использование в узле защиты оптопары (светодиод и фототиристор, имеющие оптическую связь и смонтированные в одном корпусе) повышает надежность его работы.

При увеличении тока, потребляемого нагрузкой от стабилизатора, увеличивается падение напряжения на резисторе R8, а следовательно, и напряжение, поступающее на базу транзистора VT3. При определенной величине этого напряжения коллекторный ток транзистора VT3 достигает значения, необходимого для зажигания светодиода оптопары VU1.

Излучение светодиода включает тиристор оптопары, и напряжение на базе составного транзистора уменьшается до 1... 1,5В, так как она оказывается подключенной к общей шине через малое сопротивление включенного тиристора. Вследствие этого составной транзистор закрывается, а напряжение и ток на выходе стабилизатора уменьшаются почти до нуля. Падение напряжения на резисторе R8 уменьшается, транзистор VT3 закрывается и свечение оптрона прекращается, но тиристор остается включенным до того момента, пока напряжение на его аноде (относительно катода) не станет меньше 1 В. Это произойдет только в том случае, если будет отключено входное напряжение стабилизатора или замкнуты контакты кнопки SB1.

Коротко о назначении остальных элементов схемы. Резистор R1, конденсатор С2 и стабилитрон VD5 образуют параметрический стабилизатор, служащий для стабилизации напряжения питания операционного усилителя и предварительной стабилизации напряжения питания источника опорного напряжения R5, VD2. Резистор R2 обеспечивает начальное напряжение на базе составного транзистора, повышая надежность запуска стабилизатора Конденсатор СЗ предотвращает возбуждение стабилизатора на низкой частоте. Резистор R3 ограничивает выходной ток операционного усилителя в случае короткого замыкания на его выходе (например, при включении тиристора оптопары).

Цепь R4, С2 предотвращает возбуждение операционного усилителя и выбирается в соответствии с рекомендациями, приводимыми в справочной литературе для конкретного типа операционного усилителя.

Стабилитрон VD7 и резистор R7 образуют параметрический стабилизатор, служащий для поддержания напряжения питания узла защиты на неизменном уровне при изменении выходного напряжения стабилизатора.

Резистор R6 ограничивает коллекторный ток транзистора VT3 на уровне, необходимом для нормальной работы светодиода оптопары. В качестве резистора R6 используется резистор типа С5-5 или самодельный из провода высокого сопротивления (например, спирали от утюга или электроплитки).

Конденсатор С1 снижает уровень пульсаций входного, а С5 - выходного напряжений стабилизатора. Конденсатор С6 блокирует выходную цепь стабилизатора по высокочастотным гармоникам. Нормальный тепловой режим транзистора VT2 при больших токах нагрузки обеспечивается его установкой на радиаторе площадью не менее 100 см.

Стабилизатор обеспечивает плавную регулировку выходного напряжения в пределах 4,5...12 В при выходном токе до 1 А с уровнем пульсаций выходного напряжения не более 15 мВ. Защита от перегрузки срабатывает при выходном токе свыше 1,1 А.

Теперь о замене элементов. Операционный усилитель К553УД1 можно заменить на К140УД2, К140УД9, К553УД2. Транзистор VT1 может быть типа КТ603, КТ608, a VT2 - КТ805, КТ806, КТ908 и т. п. с любыми буквенными индексами. Оптопара - указанного типа с любым буквенным индексом.

Напряжение переменного тока подается на выпрямитель стабилизатора с любого понижающего трансформатора, обеспечивающего выходное напряжение не менее 12 В при токе 1 А. В качестве такого трансформатора можно использовать выходные трансформаторы ТВК-110 ЛМ и ТВК-110 Л1.

Стабилизатор на специализированной микросхеме

Указанные выше трансформаторы можно использовать совместно со стабилизатором напряжения, схема которого приведена на рисунке. Он собран на специализированной интегральной схеме К142ЕН1. Она представляет собой стабилизатор напряжения непрерывного действия с последовательным включением регулирующего элемента.


Достаточно высокие эксплуатационные характеристики, встроенная схема защиты от перегрузки, работающая от внешнего датчика тока, и схема включения/выключения стабилизатора от внешнего источника сигнала позволяют изготовить на его основе стабилизированный источник питания, обеспечивающий выходные напряжения в диапазоне 3...12 В.

Схема самого интегрального стабилизатора напряжения не может обеспечить ток на нагрузке свыше 150 мА, что явно недостаточно для работы некоторых устройств. Поэтому для увеличения нагрузочной способности стабилизатора к ее выходу подключен усилитель мощности на составном транзисторе VT1, VT2. Благодаря этому выходной ток стабилизатора может достигать 1,5 А в указанном диапазоне выходных напряжений.

Напряжение обратной связи, подаваемое на выход интегральной схемы DA1, выполняющей в данной схеме роль усилителя отрицательной обратной связи с внутренним источником опорного напряжения, снимается с резистора R5. Резистор R3 служит датчиком тока узла защиты от перегрузок по току. Резисторы R1, R2 обеспечивают режим работы транзистора VT2 и внутреннего транзистора защиты интегральной схемы DA1. Конденсатор С2 устраняет самовозбуждение интегральной схемы на высокой частоте.

Резистор R3 проволочный, аналогичный описанному ранее. В качестве транзистора VT1 можно использовать транзисторы типа КТ603, КТ608, a VT2 - КТ805, КТ809 и т. п. с любыми буквенными индексами.

Рассматриваемый компенсационный стабилизатор напряжения непрерывного действия снижает максимальное значение мощности, рассеиваемое регулирующим транзистором в режиме короткого замыкания. Принципиальная электрическая схема стабилизатора приведена на рис. 5.

Режим ограничение тока

Резистор R 1 является датчиком тока. При перегрузке по току на R 1 возникает напряжение, которое через резистор R 2 подается на базо-эмиттерный переход транзистора VT 3 , которыйприоткрывается. В результате появляются базовый и коллекторный токи VT 3 , которые уменьшают базовый ток транзистора VT 2 , соответственно уменьшаются коллекторные токи транзисторов VT 2 иVT 1 , что приводит к ограничению выходного тока стабилизатора напряжения.

Защита от короткого замыкания

Для защиты используется 2 резистора – R 2 и R 3 и при нормальном режиме работы

напряжение на эмиттере транзистора VT 1 равно выходному. При коротком замыкании выходное напряжение равно нулю, соответственно напряжение на эмиттере транзистора VT 1

тоже равно нулю и все входное напряжение приложено к резисторам R 2 и R 3 . Напряжение на

R 2 возрастает и к нему прибавляется падение напряжения на R 1 , что приводит к открытию

Рис. 5. Принципиальная электрическая схема стабилизатора напряжения

на ОУ с изменяющимся уровнем ограничения тока

и с защитой от короткого замыкания

транзистора VT 3 . Резисторы R 2 и R 3 рассчитаны таким образом, чтобы коллекторный ток VT 3 в режиме короткого замыкания составлял примерно 80% от базового тока VT 2 . Соответственно, базовый ток VT 2 снижается примерно в 5 раз, что приводит к снижению коллекторного тока VT 1 тоже в 5 раз. Тем самым транзистор VT 1 защищается от перегрузки при коротком замыкании.

Стабилизация выходного напряжения

Если в нормальном режиме работы по каким-то причинам выходное напряжение стабилизатора изменяется, то изменяется и напряжение, создаваемое делителем R 6 , R 7 , R 8 в точке А. Операционный усилитель DA 1 усиливает разницу между опорным напряжением () и напряжением в точкеA (), которое можно посчитать по формуле

Если напряжение на выходе стабилизатора уменьшилось, то разница будетположительной иувеличивается, что приводит к уменьшению тока, проходящего через стабилитронVD 3 , который является частью тока, проходящего через R 4 .Другая часть уходит на базу транзистораVT 2 и на выход операционного усилителяDA 1 . Соответственно, если уменьшается, то увеличиваются токи,и,и, соответственно, увеличивается. При увеличениисхема стабилизации работает по аналогичной цепочке (уменьшая отклонение.

Стабилитрон VD 3 включается для того, чтобы операционный усилитель DA 1 работал в активном режиме, при котором должно составлять примерно половину напряжения питания операционного усилителя(+U). Выходное напряжение самого стабилизатора () может быть значительно выше. На базе транзистораVT 2 напряжение выше, чем на 2. Соответственно, разница междуи напряжением на базеVT 2 составляет определенную величину, которая компенсируется с помощью стабилитрона VD 3